
RL-TR-96-157
Final Technical Report
October 1996

AUTOMATIC SCHEDULING OF OUTAGES
OF NUCLEAR POWER PLANTS WITH TIME
WINDOWS

CALSPAN-UB RESEARCH CENTER

Dr. Carla Gomes

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19961125 023 DUG QUALXT? INSPECTED 3

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-96-157 has been reviewed and is approved for publication.

): $o«. WMcpt APPROVED:
KAREN M. ALGÜIRE
Project Engineer

)0tU*^*>
FOR THE COMMANDER: #'

* mtrM A rtPAMTPTJO JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
OMBNo. 0704-0188 REPORT DOCUMENTATION PAGE

Pubic reportng burden for trfecohction of infc»rristailBest»T*edtoavarage1 hour par response Inducing the «me for revtawirig hstrudfans, searching eodstlng data sources,
gathering and mantahhg the data needed, and mi^eUhu and revlewng thecolectlon of Wormatfan. Sand mm»» to regardng this burden estimate or any ether aspect of tNs
colectlcn of nformatiorK hdudng augp^atkxia far reck^
Davis Highway, Sute 1204, Arirajon, VA 22202-4302, and to the Office of Management arxi Budget, Paperwak RedurJIon Pto]ea (07044« Be), Washington, DC ZOSOa

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

October 1996

a REPORT TYPE AND DATES COVERED

Final Jan 95 - Dec 95
4. TITLE AND SUBTITLE

AUTOMATIC SCHEDULING OF OUTAGES OF NUCLEAR POWER PLANTS
WITH TIME WINDOWS

6. AUTHOR(S)

Dr. Carla Gomes

& FUNDING NUMBERS

C - F30602-93-D-0075
Task 20

PE - 62702F
PR - 5581
TA - 27
WU - PS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CALSPAN-UB RESEARCH CENTER
4455 Genesee Street
Buffalo, NY 14225

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory/C3CA
525 Brooks Road
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-96-157

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Karen M. Alguire/C3CA/(315) 330-4833

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release, Distribution Unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximm 200 words)

This report describes a successful project for transference of advanced Al technology
into the domain of planning of outages of nuclear power plants as part of DOD's dual-
use program. ROMAN (Rome Lab Outage Manager) is the prototype system that was
developed as a result of this project. ROMAN'S main innovation compared to the
current state-of-the-art of outage management tools is its capability to automatically
enforce safety constraints during the planning and scheduling phase. Another innova-
tive aspect of ROMAN is the generation of more robust schedules that are feasible over
time windows. In other words, ROMAN generates a family of schedules by assigning time
intervals as start times to activities rather than single start times, without affect-
ing the overall duration of the project. ROMAN uses a constraint satisfaction paradigm
combining a global search tactic with constraint propagation. The derivation of very
specialized representations for the constraints to perform efficient propagation is a
key aspect for the generation of very fast schedules - constraints are compiled into
the code, which is a novel aspect of our work using an automatic programming system,
KIDS.

14. SUBJECTTERMS Software Synthesis, Formal Methods, Problem
Specifications, Artificial Intelligence, Planning, Scheduling,
Constraint Propagation, Constraint Satisfaction

15. NUMBER OF PAGES
84

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

»He QUALXTy INSPECTED 3

Standard Form 298 [Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

Contents

1 Introduction l

2 Related Work 2

3 Planning and Scheduling of Nuclear Power Plant Outages 3

3.1 Definition of Problem 4

3.1.1 Activities 4

3.1.2 Plant Configuration and Risk Management 4

3.1.3 Resources 5

4 Outage Planning and Scheduling in the Real World 6

4.1 Time Window Assignment 7

4.2 Plant Configuration and Risk Management 7

8 4.3 Resources

5 ROMAN - Rome Lab. Outage Manger 8

5.1 Search and Control Mechanisms 10

5.1.2 Constraint Propagation 10

5.1.3 Interaction Between The Schedule and the State of Plant 15

6 Performance Results 16

7 Conclusions and Future Work 18

8 Acknowledgments 18

9 References 19

Appendix A - Derivation of Constraints from the Separation Constraint 21

Appendix B - Derivation of Constraints from the ACP Constraint 29

Appendix C - Domain Theory for the Outage Problem 43

Appendix D - Global Search Theories for the Outage Problem 71

11

1 Introduction

Planning and scheduling tasks are inherently complex. In computational terms, they
are intractable, i.e.. NP-hard or worse. As a practical consequence, realistic size plan-
ning and scheduling problems cannot be solved optimally in a "reasonable" amount of
time. Nonetheless, solutions have to be found for real-world problems, and therefore
heuristic approaches have to be adopted, ideally with some guarantee on the quality
of the solution.

This paper focus on the real-world problem of multiple resource-constrained project
management. This problem is very common in manufacturing and it is a generaliza-
tion of the weil-known job-shop scheduling problem (Blazewicz et al 83, Vaessens et al 94).
As a particular instance of this problem, we consider the management of outages of
nuclear power plants. An outage is a planned shutdown for refueling, repair, and
maintenance. It is a rather daunting real-world task that may involve from 10,000
up to 45,000 activities. In the domain of nuclear power plants, risk and safety man-
agement are sine qua non conditions and therefore a planning and scheduling system
(automatic or manual) has to enforce safety constraints guaranteeing that the state
of the plant is safe at any time during an outage. The current automatic technology
for outage scheduling used by the utilities does not take into consideration safety
requirements — currently, safety and risk management still heavily rely on the expe-
rience of the manual schedulers, rather than on automatic procedures. Furthermore,
in this domain- the existence of good automatic solutions is not only crucial for nu-
clear safety reasons but also for economic reasons — the cost per day of shutdown is
in the order of 31,000,000.

We report on a successful project for transference of advanced AI technology into
the domain of planning of outages of nuclear power plants, a collaboration between
Rome Laboratory, the Electric Power Research Institute, Kaman Science, and Kestrel
Institute as part of DOD's dual-use program. The software environment selected for
this project was KIDS (Kestrel Interactive Development System)(Smith 91], which
is a set of semiautomatic tools to transform declarative problem specifications into
correct and efficient programs. The main goal of the project was to evaluate the use
of transformational approaches and AI technology to solve real-world planning and
scheduling problems involving complex constraints.

ROMAN (Rome Lab Outage Manager) is the prototype system that was developed as
a result of this project [Gomes & Smith 96]. ROMAN'S main innovation compared to
the current state of the art of outage management tools is its capability to automat-
ically enforce safety constraints during the planning and scheduling phase. Another
innovative aspect of ROMAN is its generation of more robust schedules that are fea-
sible over time windows. In other words, ROMAN generates a family of schedules
by assigning time intervals as start times to activities rather than single point start
times, without afecting the overall duration of the project.

Roman uses a rich representation for the state of the plant at any time (as in plan-
ning approaches) which allows for efficient constraint-based reasoning, in particular,
temporal reasoning (as in scheduling). The problem is modeled as a constraint sat-
isfaction problem combining a global search tactic with constraint propagation. The
derivation of very specialized representations for the constraints to perform efficient
propagation is a key aspect for the generation of very fast schedules — constraints
are compiled into the code, which is a novel aspect of our work using an automatic
programming system, KIDS. In order to increase schedule robustness our approach
entails the generation of families of schedules with the same completion time and that
are feasible over time intervals.

In the next section we describe related work. In section 3 we define the outage
problem and in section 4 we discuss the current state-of-the-art of outage management
for nuclear power plants and its limitations. Section 5 describes ROMAN in detail.
Section 7 summarizes the main results achieved with ROMAN.

2 Related Work

Our approach to scheduling uses global search methods as opposed to local search
[Gomes & Smith 96]. Local search techniques are based on the idea of improving ex-
isting solutions by iteratively making small changes. A local search algorithm defines a
walk in which each solution is a neighbor of a previous visited solution. Examples of lo-
cal search approaches are repair methods (e.g., [Zweben et al 94, Selman & Kautz 93,
Minton et al 90]), fix-point iteration[Cai & Paige 89], and linear programming algo-
rithms. Global search methods on the other hand focus on incrementally generat-
ing a solution by repeatedly splitting an initial set of solutions into subsets until a
feasible or optimal solution can be extracted. Examples of global search methods
include backtrack, heuristic search, branch-and-bound. Examples of approaches to
scheduling taking a global search perspective are OPIS/DITOPS [Smith 94] Micro-
Boss [Sadeh 94].

The main innovation of our approach compared to other AI scheduling approaches is
the derivation of very specialized constraints that are compiled into the search and
control mechanisms [Gomes & Smith 96]. Other approaches to scheduling use con-
straint representations and operations that are geared for a broad class of problems,
while our approach, a transformational approach, derives specialized representations
for constraints allowing fast constraint checking and constraint propagation.

Another novel aspect of our approach is the generation of schedules that are feasible
over time windows rather than having single time points as start times. With our
approach, we generate an infinite family of schedules that have the same completion
time. Existing AI approaches to scheduling with complex state variables only generate
a single solution, feasible for single start times, without any guarantees of feasibility
over time windows [Gomes & Smith 96].

The framework selected for this project was KIDS (Kestrel Interactive Development
System) [Smith 91], which supports users in transforming declarative problem specifi-
cations into correct and efficient programs. The transformations provided in KIDS are
designed to perform significant and meaningful actions in terms of search efficiency.
The various transformations in KIDS include: algorithmic transformations, program
optimization techniques and data structures refinement. The algorithmic transfor-
mations allow the user to add search and control mechanisms to a given problem
specification. Finite differencing is another important transformation provided by
KIDS. KIDS uses a form of deductive inference called directed inference to reason
about the problem specification in order to automatically apply tactics, derive filters
and perform constraint propagation [Smith et al 95].

KIDS has been used to derive a very fast transportation scheduler for the US Trans-
portation Command, KTS (Kestrel Transportation Scheduler) [Smith k Parra 93]. A
typical transportation problem with 10,000 movement requirements takes the derived
scheduler 1 to 3 minutes to solve, compared with 2.5 hours for a deployed feasibility
estimator (JFAST) and 36 hours for deployed schedulers (FLOGEN, ADANS). The
computed schedules use relatively few resources and satisfy all specified constraints.
The speed of this scheduler was due to the synthesis of strong constraint checking
and constraint propagation code [Smith et al 95]. In this paper we show how this ap-
proach can be extended to tackle a much richer real-world scheduling task involving
complex state variables and time windows.

3 Planning and Scheduling of Nuclear Power Plant
Outages

The planning and scheduling of the operations involved in the outages of nuclear power
plants has a great impact in terms of the outage costs (replacement power, labor cost,
etc.), use of scarce resources and implementation of safety procedures. Prior to 1979,
before the accident at Three Mile Island (TMI), refueling was the driving factor of
outages of nuclear power plants: maintenance plans were governed by the projected
duration of refueling activities. After the TMI accident, the focus turned to improving
nuclear power plant effectiveness. The duration of an outage was determined not only
by refueling activities, but by the work and plant modifications required to make
the plant safer and more effective [PSDI 94, Wallace 90], Throughout the 1980s,
backfits and the aging of nuclear power plants has reversed outage scope priorities
and methodologies. Often the refueling activities no longer dictate the critical path
in an outage.

3.1 Definition of Problem

The problem of planning and scheduling nuclear power plant outages can be stated

as follows:

Given a set of outage activities (refueling operations, repairs, modifica-
tions, and maintenance activities), a set of resources, and a set of techno-
logical constraints, assign times and resources to the activities in such way
that the completion of the outage is minimized while safely performing all

the activities required by the outage.

3.1.1 Activities

Depending on the planning and scheduling procedures of each particular plant, as well
as the scope of the activities performed during the outage, the planning and scheduling
of outages for nuclear power plants might involve from 15,000 up to 45,000 activities.
During an outage several activities are performed, such as:

• Refueling operations

• Plant betterment

• Preventive maintenance

• Corrective maintenance

• Technical specification requirements for inspections or surveillance.

Relationships between activities that are explicitly defined in work order activities
are temporal relationships (e.g., activity A precedes (follows) activity B). Other
constraints between activities arise as a result of different requirements in terms of
feasible plans and schedules. Requirements regarding feasible plans and schedules are
outlined in the next paragraphs.

3.1.2 Plant Configuration and Risk Management

The general principle underlying the outage procedures is that outages should be as
short as possible, maintaining the appropriate level of nuclear safety. In other words,
the outage should be planned and managed to reduce shutdown risks through the
appropriate consideration of defense in depth and preventive measures. The concept
of defense in depth, used for the purpose of managing risk during shutdown consists

of:

• providing systems, structures and components to ensure backup of key safety
functions using redundant, alternate or diverse methods;

• planning and scheduling outage activities in a manner that optimizes safety

system availability

Main safety functions and systems components that are monitored to implement the
concept of defense in depth are:

• electricity power control system

• primary and secondary containment

• fuel pool cooling system

• inventory control

• reactivity control

• shutdown cooling

• vital support systems

Figure 1 depicts the decision tree regarding safety levels for a simple safety function,
electricity power control.

3.1.3 Resources

The main type of resource taken into consideration when planning and scheduling
nuclear power plant outages is labor, organized into different skill groups. Other
resources that are considered include:

• reactor building crane

• laydown areas

• water purification and storage systems

• radioactive waste system

• specialized equipment

ROAMN does not include resource assignment.

Activity with
AC power loss
potential

yes ,

offsite sources
available

operable emergency
safeguard bus

operable emergency
safeguard bus

>= 3 GREEN

2 YELLOW

1 ORANGE

0 RED

>= 3 YELLOW

2 ORANGE

<= 1 RED

operable emergency
safeguard bus

4 YELLOW

3 ORANGE

<=2 RED

offsite sources
available

operable emergency
safeguard bus

3 YELLOW

2 ORANGE

<=1 RED

operable emergency
safeguard bus

4 YELLOW

3 ORANGE

<= 2 RED

operable emergency
safeguard bus

4 ORANGE

<= 3 RED

Figure 1: Safety Function - Electricity Power Control

4 Outage Planning and Scheduling in the Real
World

There are approximately 110 nuclear plants operating in the US. Our knowledge about
the way outage planning and scheduling is performed in real world environment only
considers the power plant« that axe members of EPRI, the Electric Power Research
Institute. Nevertheless, we consider our sample representative since most of the op-
erating nuclear power plants are members of EPRI, with some notable exceptions like
Florida Power and Pacific Gas k. Electric.

4.1 Time Window Assignment

The current automatic planning and scheduling techniques used by the utilities are
very simple - planning and scheduling still heavily relies on the experience of the
manual schedulers rather than on automatic procedures. In the late 1970s, utilities
began to use the project management techniques to control nuclear refueling outages.
Current automatic approaches to outage scheduling mainly consist of the applica-
tion of automatic project management techniques, such as PERT and CPM tech-
niques. The software currently used by the utilities to perform their outage planning
and scheduling tasks are mainly: Primavera Project Planner for Windows (personal
computers), Project/2 (mainframes), Project2/X for Windows (personal computers),
Prestige (mainframes) and OpenPlan (personal computers).

Some sites use activity based scheduling only. Activities (work orders) and temporal
relationships between activities are coded into the software1 and a PERT/CPM
network is generated. The PERT/CPM network can then be manually perturbed to
meet resource requirements, safety requirements, and other requirements.

When system windows are used for scheduling, milestones and key events are set up
based on experience and the status of key components between the milestones deter-
mines the position of the system windows. The activities (work orders) are manually
assigned to the system windows where they are allowed to be performed within the
scope of the predecessor-successor relationships. PERT/CPM network is generated
considering the activities, the pre-defined system windows and the milestones. The
PERT/CPM network can then be manually perturbed to meet resource requirements,
safety requirements and other requirements.

4.2 Plant Configuration and Risk Management

Safety and risk assessment have been by far manual processes which call on the
expertise of the personnel involved to make decisions based on published policies
and procedures. In order to ensure that the sequence of activities performed during
an outage follows the safety requirements, the schedule produced using PERT/CPM
software tools is evaluated using a risk assessment methodology. If the schedule does
not meet the safety requirements, manual adjustments have to be performed. ORAM
(Outage Risk Assessment Methodology) h one. of the most popular software tools
used to perform r,he risls assessment of schedules. It simulates the execution of the
schedule keeping track of the configuration of the plant at any time and therefore
evaluating the risk inherent to a schedule at any time during its execution.

actually, the only type of temporal relationship handled by the current software is the relation-
ship before/after with the possibility of definition of slacks.

4.3 Resources

During automatic generation of schedules resources are assumed to be unlimited.
Manual adjustments are performed a posteriori in order to meet the resource require-
ments.

5 ROMAN - Rome Lab. Outage Manager

ROMAN'S approach combines a constraint satisfaction paradigm with global search
and constraint propagation [Gomes & Smith 96]. ROMAN includes all the technolog-
ical constraints currently incorporated in the automatic tools used by the utilities for
schedule generation. In addition, it includes all the constraints regarding the safety
function AC power. Other safety functions could be modeled in a similar way. A
top level formal specification of the outage problem including the safety function AC
power follows:2

function : safe-outage-windows (activities)
returns(schedule |

Consistent-Activity-Separation(schedule) A
Consistent-AC-power(schedule) A
All-activities-scheduled (activities, schedule))

In this formulation activities correspond to the set of activities to be performed.
Each activity has a given duration, a set of predecessors, and a set of effects on
resources. The schedule is a partial order of activities. Activities in the schedule
have time windows assigned to it. A time window defines the earliest start time
(est) and latest start time (1st) of an activity, such that the activity can start at
any time during the window without increasing the overall duration of the project.
Given the duration of the activity, the earliest finish time (eft) and latest finish
time (Ift) can be calculated. The predicate Consistent-Activity-Separation(schedule)
states that all the activities in the schedule satisfy the precedence constraints. The
predicate Consistent-ac-power(schedule) states that the schedule verifies the safety
constraints, from an AC power point of view. As a completeness condition, the predi-
cate All-activities-scheduled (activities, schedule) states that all the activities have to
be scheduled.

The notion of state of the plant is a key concept in enforcing safety constraints. In
outage management the state of the plant is measured in colors — green, yellow,
orange or red, in this order of increasing risk — and is computed by considering

2We modeled the AC power safety function as a proof of concept. Other safety functions could
be modeled in a similar way.

complex decision trees regarding safety levels as illustrated in Figure 2. For instance,
if there is an activity being executed that has the potential to cause AC power loss,
then in order for the plant to be in a yellow state it is required to have two off-site
AC power sources available and three operable emergency safeguard buses.

Activity with
AC power loss
potential

offsite sources
available

operable emergency
safeguard bus

operable emergency
safeguard bus

>= 3 GREEN

2 YELLOW

1 ORANGE

0 RED

>= 3 YELLOW

2 ORANGE

<= 1 RED

operable emergency
safeguard bus

4 YELLOW

3 ORANGE

<=2 RED

offsite sources
available

operable emergency
safeguard bus

3 YELLOW

2 ORANGE

<=1 RED

operable emergency
safeguard bus

4 YELLOW

3 ORANGE

<= 2 RED

operable emergency
safeguard bus

4 ORANGE

<=3RED

Figure 2: Example of a decision tree for the safety function AC Power

Since the start times of activities are defined over time windows, we introduce two
concepts regarding the execution of an activity: the definite period and the potential
period of an activity.. The definite period of an activity corresponds to the period of
time during which the activity is definitely being execute — it is the interval of time
between the latest start time of the activity (1st) and its earliest finish time (eft).
The potential period of an activity corresponds to the period of time during which
the activity may be executed — it is the time period between the earliest start time
of the activity (est) and its latest finish time (Ift). Figure 3 illustrates the notion of
definite period of an activity. Notice that activity A does not have a definite period,
since its earliest finish time is before its latest start time.

< < > > A
est eft 1st ift

< >— < > B < >-- < > c
est 1st eft ift est 1st eft 1ft

< >- < >D <>__. <> E

est 1st (5ft 1ft est 1st eft 1ft

_ —- definite period

Figure 3: Notion of a definite period.

In addition, we define two other concepts: definite state of the plant and potential
state of the plant. The definite state of the plant is associated with the concept of
definite period: it represents the state of the plant for a given safety function (e.g.,
AC power) assuming that activities are only executed during their definite period.
The concept of potential state of the plant is associated with the concept of potential
period of an activity: it represents the state of the plant for a given safety function
assuming that activities are executed during the whole extension of their potential
periods. The potential state of the plant is always "equal" or "greater" than the
state of the plant since the definite period of an activity tends to underestimate the
duration of activities while the potential period of an activity tends to overestimate
the duration of activities. Figure 4 gives an example. Note that during certain time
intervals, the definite and potential states of the plant coincide.

5.1 Search and Control Mechanisms

KIDS provides algorithmic transformations that add control and search mechanisms
to a given specification. The search tactic selected for the outage problem was global
search (see next section). Figure 5 summarizes the approach adopted in ROMAN

[Gomes & Smith 96].

Initially global search is applied to the formal specification of the outage problem
in order to generate a schedule, assuming the definite period of activities. Since the
notion of definite period tends to underestimate the duration of the activities, it is very
likely for the schedule produced in this initial phase not to be feasible from the point
of view of the potential state of the plant. In order to enforce the safety threshold
for the potential state of the plant at any time during the outage, "refinement" of
the time windows of the initial schedule takes place. In the next section, we describe

10

red

orange

yellow

green

potential state

safety threshold

definite state

Figure 4: Definite and potential states of the plant.

global search theory.

5.1.1 Global Search Theory

Global search [Smith 87, Smith et al 95] is a backtrack algorithm, a refinement of
generate-and-test. The tactic is implemented by finding a space containing all the
solutions to the problem that can be divided into nested subspaces. The global
search algorithm starts with an initial set that contains all the solutions to the given
problem instance, repeatedly extracts solutions, splits sets, and eliminates subsets
using propagation, until no sets remain to be split. The process can be described as a
tree search in which a node represents a set of candidates, and an arc represents the
split relationship between a set and a subset. The principal operations are to extract
candidate solutions from a set and to split a set into subsets. The derivation of
efficient cutting constraints that eliminate subspaces that do not contain any feasible
solution is an important complementary operation in the derivation of the global
search tactic.

Figure 6 illustrates the global search theory for the initial scheduling of the activities
considering their definite periods. In this global search theory the initial subspace
descriptor (partial schedule) is the empty sequence (empty schedule). Splitting cor-
responds to appending an unscheduled activity, with a given time window, to the
partial schedule. Cutting corresponds to propagating the constraints over the time
windows of the activities in the partial schedule. Notice that cutting makes the time
windows shrink. It can also split a time window as in the case of activity G - due
to propagation, activity G's window was split into two. As we can see from figure 6
most of the work in this global search theory is performed by constraint propagation.
Splitting corresponds to just selecting the next activity to schedule, using a heuristic

11

Global Search Theory for Scheduling

Definite State of Plant Below Safety Threshold

Global Search Theory for Time Window Refinement

Potential State of Plant Below Safety Threshold

Figure 5: ROMAN's approach

that favors shorter schedules3,
been scheduled.

Extraction takes place when all the activities have

The operator extract corresponds to the second global search algorithm. Refinement
of time windows takes place if after applying the initial global search to the outage
problem the potential state of plant does not satisfy the safety requirements. In other
words, refinement of time windows is required to enforce the safety constraints over
the potential period of all the activities in the initial schedule. This is achieved by
applying a new global search to the formal specification of the outage considering now
with as input the schedule generated in the initial phase. In this second phase the
windows of the activities that contribute to the contention periods, i.e., the periods in
which the potential state of the plant is above the safety threshold, are systematically
reduced until the potential state of the plant becomes consistent from the safety
point of view for all the times during the outage. In this global search theory for
the refinement phase splitting corresponds to reducing the size of the windows of the
activities involved in the contention periods.

5.1.2 Constraint Propagation

One of the important features of our approach is the propagation of constraints.
Figure 7 illustrates the concept, where psched is a partial schedule, a set of candidate
solutions, a node of the global search tree. The following test states that a partial

3We also define a topological sort of the unscheduled activities according to their levels. An
activity has level 0 if it has no predecessors. Activities that only have as predecessors activities of
level 0 have level 1. Activities of level 2 only have as predecessors activities that have level 0 or 1,
etc.

12

[]

[< A >]

[<A>< C >< F >]

splitting

splitting & cutting

{< A > < C >] splitting & cutting

splitting & cutting

[<A><C>< F><G>] [<A><C>< F><G >]

< -est > - 1st A, B,C,... - activities

Figure 6: Global search theory for the Outage Problem

schedule can be extended to a complete feasible schedule:4

3 (sched) (sched € psched A feasible(sched, activities)) (1)

However, this test is in general too expensive, computationally. Instead, we derive
necessary conditions for (1), filters, i.e.:

3(sched)(sched G psched A feasible(sched, activities) ty(sched,psched))
(2)

The next step consists in incorporating the filter derived in (2) into psched, i.e.:

((psched) «=>• V(sched)(sched e psched =>• ty(sched,psched)) (3)

The test ((psched) holds when all the candidate solutions in psched satisfy \&. The
main issue is, when a given psched does not satisfy |, how can we incorporate £
into pschedl The answer is to find the greatest refinement of psched, psched , that
satisfies £.

4In the particular case of the outage problem, (sched € psched) <$=>> (domain(psched) C
domain(sched) A V(i)i G domain(psched)) => psched(i).est < sched(i).st < psched(i).lst)
and feasible(sched, activities) <=*► (consistent-separation(sched) A consistent-acp(sched)) A
all-activities-scheduled(activities, sched))

13

cutting constraint

psched

Figure 7: Cutting Constraints

psched = max^iqsched \ psched 3 qsched A £(x,qsched)} (4)

which asserts that psched, is maximal over the set of descriptors that refine psched
and satisfy £, with respect to ordering I]. We want psched to be a refinement of
psched so that all of the information in psched is preserved and we want psched to^be
maximal so that no other information than psched and £ is incorporated into psched.
The refinement relation pschedj 2 pschedi holds when the completions of pschedi
are a subset of the completions of pschedj.

KIDS instantiates a program scheme for global search with constraint propagation,
incorporating £. For more detail on propagation in KIDS see [Smith et al 95]. The
challenge in order to take advantage of the propagation mechanisms provided in KIDS
lies in finding £ - even though KIDS provides a tactic to synthesize propagation code
incorporating £, the derivation of £ using the system relies on lemmas supplied by

the user which are derived manually.

In the case of the outage problem, the predicate Consistent-Activity-Separation(schedule)
states that all the activities in the schedule satisfy the precedence constraints. The
derivation of cutting constraints from the constraint Consistent-Activity-Separation
using formulas (2) and (3) leads to the well known constraints on est and 1st, as used
in PERT. Appendix A has the formal derivation of constraints from the constraint
Consistent-Activity-Separation.

The derivation of cutting constraints for Consistent-ACP is less straightforward. Ap-
pendix B has the formal derivation of constraints from the constraint Consistent-Activity-ACP'.
An example of a constraint manually inferred from Consistent-ACP applying formu-

las (2) and (3) follows:

V(i,tl,t2,act)
i G domain(se(psched)) A tl = se(psched)(i).time A t2 = se(psched)(i + l).time

14

act € domain(psched) A sacpn(tl,psched) A
unav-sources(tl, psched) = TSACPL A affects-avail-acps? (act, psched)
=>• psched(act).lft < tl V psched(act).est > t2

Where se(psched) computes the state events of the partial schedule considering the
definite periods of activities. A state event corresponds to any event that affects the
state of the plant. The time of the ith state event of the partial schedule is repre-
sented by se(psched)(i).time, the predicate sacpll(t, sched) tests if at time t the plant
is in a state of AC power loss, unav-sources(t,psched) = TSACPL tests if at time
t the number of unavailable AC power resources equals the threshold for AC power
resource unavailability for a state of AC power loss, affects-avail-acpsi(act, psched)
tests if the activity act affects an available AC power resource, and psched(act).lft
and psched(act).est correspond respectively to the latest finish time and earliest start
time of the activity act of the partial schedule psched. This constraint triggers prop-
agation for the activities that affect available AC power resources — propagation
eliminates from the activities' time windows the periods that overlap the intervals
that correspond to a state of AC power loss with number of unavailable AC power
resources equal to TSACPL (the threshold). In other words, a new activity that
affects available AC power resources cannot occur during a period for which the plant
is operating at the threshold regarding the AC power safety function.

5.1.3 Interaction Between The Schedule and the State of Plant

A main principle embodied in our approach is incremental computation - propaga-
tion illustrates that concept - whenever a new activity is scheduled, all constraints
are immediately propagated over the schedule. Finite differencing is another transfor-
mation that allows for incremental computation, by efficiently maintaining the state
of plant. Roughly, the idea behind finite differencing is to incrementally evaluate an
expensive expression in a loop, rather than recomputing it from scratch each time. As
an example, let us assume that function f(x) calls function g(x) and that x changes
in a regular way. In this case, it might be worthwhile to create a new variable, whose
value is maintained and which allows for incremental computation. By abstracting
function / with respect to expression g(x) a new parameter c is added to /'s param-
eter list (now /(a\ c);) and c ■--- q'x) is added as a new input invariant to /. Any call
to /, whether a recursive call within / or an external call, must now be changed to
supply the appropriate new argument that satisfies the invariant - f(x) is changed to
f(x,g(x)). In this process all occurrences of g(x) are replaced by c. Often, distribu-
tive laws5 apply to g(h(x)) yielding an expression of the form h'(g(x)) and so h'(c).

5Laws are assertions that define axioms or theorems, i.e., statements that are always true. An
assertion is simply a true statement - an example of a law is (A + B) * C = (A * C) + {B * C), or (
A and B —* A). The idea is to provide information on how to distribute predicates and functions
over the main constructors of the variable that changes in a regular way, exactly in the same way

15

The real benefit in the optimization comes from the last step, because this is where
the new value of the expression g{h(x)) is computed in terms of the old value of g(x).

Act impacts

Schedule

4
impacts

t impacts

State-of-Plant

Figure 8: Interaction between the schedule and the state

In the outage problem there are several opportunities for finite differencing since
the state of the plant is a function of the schedule represented by the constraint
consistent-acp(schedule). Figure 8 shows the interactions between the state of plant
and the schedule - when a new activity is scheduled, it impacts the schedule and
propagation is triggered. Changes in the schedule impact the state of the plant,
which is incrementally maintained by finite differencing. Changes in the state impact
the schedule and propagation is triggered, which impacts the schedule and so on.
The key issue to take advantage of finite differencing is to provide good laws on how
to distribute the functions to be finite differenced over the main constructors of the
partial schedule, e.g., over appending an activity to the schedule, increasing the est
of an activity, etc.

Appendix A and appendix B contain the formal derivation of cutting constraints
from the separation constraint and from the ACP constraint, respectively. Appendix
C contains the domain theory for the outage problem considering the separation
constraints and the constraints for ACP. Appendix D contains the global search theory
for scheduling considering the definite period of activities as well as the global search
theory for time window refinement that takes into consideration the potential period

of activities.

6 Performance Results

The current version of ROMAN was completed in November 1995, and it has been
demonstrated to several large nuclear power plants such as American Electric Power
Service, Baltimore Gas k Electric, PECO Energy, etc. The demonstration was suc-
cessful, and EPRI, a consortium of more than 90% of the utilities in the US, is looking

one would write a law about how to distribute multiplication over addition. Additionally, laws also
specify special cases, for instance when dealing with base cases (e.g., empty sequences).

16

200 400 600 800 1000 1200 1400 1600
Number of Activities

Figure 9: Time performance

into using the approach embodied in ROMAN to build the next generation of outage
scheduling tools — referred to as Advanced Technology Outage Scheduler.

ROMAN has proven successful since it clearly extends the current functionality offered
by existing software tools for outage management. All the technological constraints
currently used for automatic schedule generation are incorporated into the system.
In addition, ROMAN produces schedules enforcing safety constraints — AC power
was used as a proof of concept.

The current version of ROMAN schedules up to 2,000 activities in approximately 1
minute on a Sparc 2 (see figure 9). The schedules produced by ROMAN are often
better than the current solutions since many new possibilities are explored compared
to manual solutions. Human schedulers tend to aggregate tasks and schedule them
as blocks rather than exploring interesting possibilities that occur when the activities
are scheduled separately.

A key feature of ROMAN that utility personnel find attractive is the robust schedules
that are generated. The current scheduler generates a schedule that includes start
time windows for each task. Choosing any start time within the window for a task
still permits feasible execution of the schedule. The window provides information
about how critical the start time for a task is - if a predecessor task is delayed, a
user can decide whether there still enough freedom in the start time window to allow
on-time completion, or whether it is time to reschedule parts of the overall operation.

ROMAN currently comes configured with a GUI that displays an interactive Gantt
chart for tasks, showing their start time window, duration, task description, and

17

predecessors. Another Gantt chart shows the history of the state of the plant with
respect to AC power.

7 Conclusions and Future Work

ROMAN has successfully demonstrated that outage schedules that satisfy safety con-
straints can be automatically generated [Gomes & Smith 96]. To develop ROMAN
into a practical tool requires (1) handling a richer model of the outage domain, and
(2) faster code. To date we have focused on one particular safety function dealing
with maintaining adequate sources of AC power. Future work is planned to deal with
larger and more realistic problems, as well as with other critical safety constraints and
scheduling scarce resources such as heavy lifts and skilled personnel. Furthermore,
we plan to experiment other search strategies, in particular local search strategies.
A more ambitious goal involves the automatic generation of schedules considering
different levels of risk.

8 Acknowledgments

I would like to thank several people who contributed to the success of ROMAN. Lou
Hoebel for creating the conditions and putting together the resources for this project.
Karen Alguire for her contribution to this project, in particular helping with the
programming. Doug Smith for his contribution to the design of the domain theory
for the outage problem in order to take advantage of KIDS [Gomes k Smith 96].
Stephen Westfold for extending the constraint propagation code generator in KIDS
to encompass the new class of propagation constraints that arose from the safety
constraints. Eduardo Parra for adapting the CLIM interface of KTS to the needs
of outage scheduling, resulting in the current ROMAN interface. Jeff Mitman, Dick
Wood, and Shyam Kamadolli were instrumental in providing data and information
about outage management.

18

9 References

[Blazewicz et al S3] J. Blazewicz, J. Lenstra, and A. Rinnooy Kan. Scheduling
Projects to "Resource Constriants: Classification and Complex-
ity. Discrete Appl. Math., 5:11-24, 1983.

[Cai & Paige 89] J. Cai and R. Paige. Program Derivation by Fixed Point
Computation. Science of Computer Programming, 11:197-261,
1989.

[Gomes &: Smith 96] Carla P. Gomes and Doug R. Smith. Synthesis of Power Plant
Outage Schedulers. Tech. Rep., Kestrel Institute, 1996.

[Minton et al 90] S. Minton, D. Johnson, A. Philips, and P. Laird. Solving Large-
scale constrint satisfaction and scheduling problems using a
heuristic repair method. In Proceedings of the Eigth National
Conference on Artificial Intelligence, pages 290-295, 1990.

[PSDI 94] PSDI. Managing Outages on the Desktop. Technical Brochure,
1994.

[Sadeh 94] Norman Sadeh. Micro-Opportunistic Scheduling: The Micro-
Boss Factory Scheduler. In M. Fox and M. Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994.

[Selman & Kautz 93] Bart Selman and Henry Kautz. Local Search Strategies for
Satisfiability Testing. In Proceedings of DIM ACS Workshop on
Maximum Clique, Graph Coloring, and Satisfiability, 1993.

[Smith & Parra 93] Doug Smith and Eduardo Parra. Transfornational Approach
To Transportation Scheduling. In Proceedings of the Eigth
Knowledge-Based Software Engineering Conference, Chicago,
Illinois, 1993.

[Smith 87] Douglas R. Smith. Structure and Design of Global Search Algo-
rithms. Technical Report KES.U.87.11, Kestrel Institute, 1987.

[Smith 91] Douglas R. Smith. KIDS: A Knowledge-based Software De-
velopment System „ In M. Lowry and R. McCartney, editors,
Automating Software Design, pages 483-514. MIT Press, 1991.

[Smith 94] Stephen F. Smith. OPIS: A Methodology and Architecture
for Reactive Scheduling. In M. Fox and M. Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994.

[Smith et al 95] Doug Smith, Eduardo Parra, and Stephen Westfold. Synthe-
sis of High Performance Transportation Schedulers. Technical
Report Tech. Rep. KES.U.95.1, Kestrel Institute, 1995.

19

[Vaessens et al 94] R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra. Job Shop
Scheduling by Local Search. Memorandum COSR 94-05, Eind-
hoven University of Technology, Department of Mathematics
and Computing Science, 1994.

[Wallace 90] Ronal C. Wallace. A History of the Project Management Appli-
cations in the Utility Industry. Project Management Journal,
September 1990.

[Zweben et al 94] Monte Zweben, Brian Daun, Eugene Davis, and Michael Deale.
Scheduling and Rescheduling with Iterative Repair. In M. Fox
and M. Zweben, editors, Intelligent Scheduling. Morgan Kauf-
mann, 1994.

20

Appendix A - Derivation of Constraints from
the Separation Constraint

Derivation of f (ar, f)

The derivation of cutting constraints involves two steps.

The first step consists of deriving necessary conditions for the feasibility of a solution
z contained in a space descriptor r, i.e.:

\/{x:D,r:R,z: R)(Satisfies{z, r) A 0(x, z) =» $(s, z, r)) (5)

The second step consists of making sure that the space descriptors (themselves) satisfy
the necessary conditions for containing feasible solutions, i.e.:

£(x,f) <=» V(z:R)(Satisfies(z,r) =► V(x,z,r)) (6)

In the following section we describe the derivation of £(x, f) for the safety constraint
designated by Consistent-Separation.

Satisfies and Outuput Condition for the Outage Problem

Conventions:

• psched - partial schedule

• sched - schedule

Def : Satisfies(sched,psched)

domain(psched) C domain(sched) A
y(0
i € domain(psched))
=$■ psched(i).est < sched(i).st < psched(i).lst

Def : 0(acts, psched)

consistent-separation(sched) A

21

consistent-acp(sched)) A
all-activities-scheduled (acts, sched)

Derivation of Cutting Constraint for Separation

Given the following definition for a separation constraint:

Def : consistent-separation(sched)

V(i,j)
i G domain(sched) A j £ domain(sched(i).pred)
=$- sched(i).st > sched(i).pred(j).st + sched(i).pred(j).duration

Since:

(A => 5) A (B =► 5')

(A =* 5')
And by definition of Sat:

sched(i).st > sched(j).st + sched(j).duration
=>• psched(i).lst > sched(i).pred(j).st+

sched(i).pred(j).duration
And since:

sched(i).pred(j). duration = psched(i).pred(j).duration
And Assuming:

sched{i).pred(j) = sched(j)
psched(i).pred(j) = psched(j)
sched(i) .pred(j) .duration = sched(j).duration
psched(i) .pred(j) .duration = psched(j).duration

V(«,i)
z G domain(psched) A j £ domain(psched(i).pred)

=>■ psched(i).lst > sched(j)st + psched(i).duration

Which corresponds to a cutting constraint, derived from consistent-separation(sched)).6

6As we will show below, another cutting constraint can be derived from
cons?stfe7if-separafa'o7i(sc/ieeQ.

■22

Instantiation of £ for the cutting constraint for consistent-separation(sched)).

£(x,r) <=> V{z:R)(Satisfies(z,r) => V(x,z,r)) (7)

(Satisfies(z,r) A 0(x,z)) (8)

In the outage problem, the expressions for Satisfies(z,r) and ^(x,z,f) (for the
consistent-separation) are:

Def : Satisfies(sched,psched)

domain(psched) C domain(sched) A
v(«)
z € domain(psched))
=$> psched(i).est < sched(i).st < psched(i).lst

Def : ip(acts,sched,psched) (for the consistent-acp)

V(t,j)
z € domain(psched) A j € domain(psched(i).pred)

=$■ psched{i).lst > sched(j).st + psched(j).duration

Combining both we can instantiate ^(act^psched) i.e.,

£(act,psched) -<=^ V(sched)(Satisfies(sched,psched) =>• ^>(act,sched,psched))
(9)

Def : ^(actjpsched)

V(sched)
domain(psched) C domain(sched) A

v(0
i € domain(psched))
=>• psched(i).est < sched(i).st < psched(i).lst

=► v(M
A; € domain(psched) A j 6 domain(psched(k).pred)
=4> psched(k).lst > sched(j).st + psched(j).duration

23

Since: A A B =* C

B => C

\/(sched)
domain{jpsched) C domain(sched)

=* v(i)
i € domain(psched))

psched(i).est < sched(i).st < psched(i).lst

& € domain{psched) A j € domain(psched(k).pred)
psched(k).lst > sched(j).st + psched(j).duration

Since: j € domain(psched(i).pred) C domain(psched)

V(sched)
domain(psched) C domain(sched)
=> V(«)

z € domain(psched))
=> psched(i).est < sched(i).st < psched(i).lst

=» V(fc,j)
& 6 domain{psched) A j € domain(psched) A j G domain(psched(k) .pred)

=$■ psched(k).lst > sched(j).st + psched(j).duration

Since: A A ß ^ C

V(sc/iee?)
domain(psched) C domain(sched)

=► v(.')
i € domain(psched))

24

3- psched(i).est < sched(i).st < psched(i).lst

=> v(i)
j G domain(psched)

=» V(*r)
k G domain(psched) A A j G domain(psched(k).pred)

==>■ psched(k).lst > sched(j).st + psched(j).duration

Since: V(K)K € 5 =* P(ÜT)

v(Ä")ür € 5 A r(üO => g(Ä")

V(Ä-)ÜT G5^ P(tf) => Q(K)

W(sched)
domain(psched) C domain(sched)

v(i)
i G domain(psched))
==> psched(i).est < sched(i).st < psched(i).lst

=► V(fc)
fc G domain(psched) A A i G domain(psched(k).pred)

==> psched(k).lst > sched(i).st + psched(i).duration

\/(sched)
domain(psched) C domain(sched)
=► v(i)

i G domain(psched))
psched(i),est < sched(i).st < psched(i).lst

=> V(*)'
& G domain(psched) A A i G domain(psched(k).pred)

==> psched(k).lst > sched(i).st ■+ psched(i).duration

Since: A =» 5 ==> C

25

A A B => C

W(sched)
domain(psched) C domain(sched)
=► V(i)

i G domain(psched))
=>■ psched(i).est < sched(i).st < psched(i).lst

AV(fc)
fc G domain(psched) A A i G domain(psched(k).pred)

=>- psched(k).lst > sched(i).st + psched(i).duration

Since: A => (ß A C)

(A A B) =» C

=4>

domain(psched) C domain(sched)
=> V(»,fc)

i G domain(psched)) A & G domain{psched)
A i € domain(psched(k) .pred) A psched(i).est < sched{i).st

sched(i).st < psched(i).lst
=>• psched(k).lst > sched(i).st -\- psched(i).duration

V(sched)
domain(psched) C domain(sched)

i G domain(psched)) A & G domain{jpsched)
A i G domain(psched(k).pred) A psched(i).est < sched(i).st
=>• sched(i).st < psched(i).lst

=$> sched(i).st < psched(k).lst — psched(i).duration

Replacing sched with qsched:

26

domain(qshed) = domain(psched)
V(a) a G domain(qshed)

=>• qsched(a) = sched(a)
(Assuming that each activity has the
index in psched, qsched, and sched)

Since: (A' =► A) A (A => B)
==>
(A1 =► B)

W(qched)
domain(psched) C domain(qsched)
=> V(i,fc)

i G domain(psched)) A A: G domain(psched)
A i G domain(psched(k).pred) A psched(i).est < qsched(i).st
==>• qsched(i).st < psched(i).lst

=>■ qsched(i).st < psched(k).lst — psched(i).duration

Since: V(m) S(m)

V(a) a G domain(m) A T(a)
==>- (m(a) < p(a) =$■ m(a) < q(a))

S(p) A V(a) a G domain(p) A T(a)

=» (p(a) < ?(a)

V(t,*)
i G domain(psched)) A A; G domain(psched)
A i G domain(psched(k).pred)
=$■ psched(i).lst < psched(k).lst — psched(i).duration

<=>

27

V(i, k)
i € domain(psched)) A & € domain(psched)
A z € domain(psched(k).pred)
=>• psched(i). 1st + psched(i).duration < psched(k).lst

Since: psched(i).lst + psched(i).duration = psched(i).lft

<(=4>

V(i,*)
i € domain(psched)) A k € domain(psched)
A i € domain(psched(k).pred)
=> psched(i).lft < psched(k).lst

Since: j G domain(psched(i) .pred) C domain(psched)

<=>

V(«, *)
fc € domain(psched)
A fG domain(psched(k).pred)
==>■ psched(i).lft < psched(k).lst

28

Appendix B - Derivation of Constraints from
the ACP constraint

Derivation of f (x, r)

The derivation of cutting constraints involves two steps.

The first step consists of deriving necessary conditions for the feasibility of a solution
z contained in a space descriptor r, i.e.:

V(x : D,r:R,z: R)(Satisfies(z, r) A 0{x,z) =► #(x,z, r)) (10)

The second step consists of making sure that the space descriptors (themselves) satisfy
the necessary conditions for containing feasible solutions, i.e.:

£(x, f) «=* V(z : R)(Satisfies{z, f) =» *(x, z, r)) (11)

In the following section we describe the derivation of £(x, f) for the safety constraint
designated by AC Power.

Satisfies and Outuput Condition for the Outage Problem

Conventions:

• es(sched) - event sequence - sequence of events of sched

• sacpl1{t, sched) - is the state a state of acp loss, at time t given sched?

• avacpr(t, sched) - number of acp resources available, at time t, given sched

• AC PR - set of ACP resources

• au?(x,i, sched)/unav?(x,t, sched)- is resource x available (unavailable) at time
t, given sched?

• affects?(x, y) does activity x affect resource y?

Def : Satisfies (sched, psched)

domain(psched) C domain(sched) A
V(i : i € domain(psched))

psched(i).est < sched(i).st < psched(i).lst

29

Def : 0(acts,psched)

consistent-separation(sched) A
consistent-acp(sched)) A
all-activities-scheduled [acts, sched)

Derivation of Cutting Constraint for AC Power

Given the following definition for a safety constraint for AC Power:

Def : consistent-acp(sched))

V(i,tut2)
i € domain(es(sched)) A tx = es(sched)(i) A t2 = es(sched)(i + 1)
==> sacpl?(t, sched)

=> avacpr(< ti,t2 >,sched) > T'

Since: A => B => C

A A B => C

4=4-

V(i,*i,<2)
i 6 domain(es(sched)) A ti = es(sched)(i) A t2 = es(sched)(i + 1)
A sacplt{t, sched)
=4- avacpr(< ti,t2 >,sched) >T'

Since: at;acpr(< £1,^2 >, sched) > T'
4=4-

unavacpr(< h,t2 >, sched) < TACPR — T' — T)

4=4-

V(«,*i,t2)
i G domain(es(sched)) A ii = es(sched)(i) A t2 = es(sched)(i + 1)

30

A sacpll(t,sched)
=$■ unavacpr(<ti,t2>,sched)<T

Since: E*<=SA.P(X) 1 <T

V(Ä)
RCS A |Ä| = T A E,eRAF(x) 1 = T A
V(y) y G 5/Ä

V(t,*i,<2)
t G domam(es(scfce(f)) A *i = es(scÄed)(«) A *2 = es(sched)(t + 1)
A sacpl1(t,sched)
=4> V(Ä)Ä C ACPi? A |Ä| = T A EK£R A unat/?(*,<ti,ta>.*A«Q ! = r

A V(y) y G ACPR/R
=» av7(y,<ti,t2>,sched)

Since: au?(y, < <i,*2 >, scÄed)

V(i) i G domain(sched) A affects'!'{j,y)
=£- -> during(j,<ti,t2 >)

V(t,<i,*2)
t G domatn(es(acÄed)) A *i = es(sc/jed)(i) A *2 = es(sched)(i + 1)
A sacpll(t,sched)
=4> V{R)RCACPR A |i?| = T A E*eR A «»«;?(*,««, ,t2>,«A«Q X = T

A V(y) y G ACPR/R
=>• V(j) j G domain(sched) A affectst(j,y)

=>> -*during(j, < *i,J2 >)

31

Substituting ->during(j, < ti,t2 >)

<=>

V(i,*i,*2)
i G domain(es(sched)) A ti = es(sched)(i) A t2 = es(sched)(i + 1)
A sacpl!(t,sched)
=* V(R)R C ACPÄ A |Ä| = T A E,£R A unavl{x,<t„t,>,sched) 1 = T

A V(y) y G ACPR/R
=>• V(j) j € domain(sched) A affects!(j,y)

=> sched(j).ft < h V sched(j).st > t2

Since: A =>■ 5 ==>• C

4=>

V(»,*i,<2)
i G domain(es(sched)) A h = es(sched)(i) Af2 = es(sched)(i + 1)
A sacpP.{t,sched) A V(R)RCACPR A |Ä| = T A

E,eH A «u,«?(,,<ilfia>,«*«o 1 = T A V(y) 2/ G ACPß/Ä
A V(j) j G domain(sched) A affects!(j,y)
=> sched(j).ft < ti V sched(j).st > t2

Pulling out all the quantifiers:

V(*,<i,<2,i,Ä,y)
i G domain(es(sched)) A h = es(sched)(i) A t2 = es(sched)(i + 1)
A j G domain(sched) ARC ACPR A \R\ = T A

ZxZR A un«„?(*,<ti,t2>,.cfc«Q 1 = TA V e ACPR/R
A sacpH(t,sched) A affects!(j,y)
==> sched(j).ft < ti V sched(j).st > t2

32

r

Since: (A' => A) A (A => B)

(A' =* 5)

And: (assuming that each activity has the
same index in psched and sched)
domain(psched) C domain(sched)

domain(es(psched)) C domain(es(sched))

V(i) i 6 domain(psched) A pes(psched)(i)
=> pes(psched)(i) C es(sched)(i)

V(<i,<2) unav?(x,<ti,t2 >,psched)
=>•■ unav!(x,<t1,t2 >, sched)

V(», <i,*2, i,-R,y)
i € domain(pes(psched)) A <i = pes(psched)(i) A t2 = pes(psched)(i + 1)
A;'e domain(psched) ARC ACPR A \R\ = T A

2sx€R A unat;?(a;,<t1,<2>,p«cfted) 1 = i A !/€ ACPR/R

A sacpl!(t, psched) A affects! (j,y)
=>■ sched(j).ft < <i V sched(j).st > t2

Replacing < ^,t2 > with < UB,LB >C< ^,£3 >, where:

given a generic time 2 (ti or t2), ac£ the corresponding
activity that triggers that event at time £, type-event = s
if the event corresponds to the start of act,type-event = /
otherwise:

// type-event = s
Then act.lst
Else act.lft
(Notice that UB>h)

LB =

33

If type-event = 5
Then act.est
Else act.eft
(Notice that LB > t2)

And since:

(A =► B) A (B =► 5')

V(«',*i,*2,i,-R,j/)
i € domain(pes(psched)) A ti = pes(psched)(i) A t2 = pes(psched)(i + 1)
A j'e domain(psched) ARC AC PR A \R\ = T A

52x£R A unavl(x,<tut2>,psched) 1 =T A \) € ACPR/R

A sacpP.(t,psched) A affectsl(j,y)
=► sched(j).ft <UB V sched(j).st > LB

Which corresponds to the cutting constraint, derived from consistent-acp(sched)).

Instantiation of £ for the cutting constraint for consistent-acp(sched)).

((x,r) «=> V(z:R)(Satisfies(z,r) =► tf(z,*,r)) (12)

In the outage problem, the expressions for Satisfies(z,r) and ^(«,2, r) (for the
consistent-acp) are:

Def : Satisfies(sched,psched)

domain(psched) C domain(sched) A
y(0
i € domain(psched)
=>■ psched(i).est < sched(i).st < psched(i).lst

Def : tj}{acts, sched,psched) (for the consistent-acp)

34

^

V{i,h,t2,j,R,y)
i e domain(pes(psched)) A U = pes(psched)(i) A t2 = pes(psched){i + 1)
A j E domain{psched) A R C AC PR A \R\ = T/\

E*£fi A«nat,7(*,<ti,t2>j»«Ae<*) 1 = TA^ ACPR/R
A sacpH(t,psched) A affects'! (j,y)
=* sched(j).ft <UB V sched{j).st > LB

Combining both we can instantiate £(act,psched) i.e.

£(act,psched) 4=> V{sched)(Satisfies(sched,psched) =* y(act,sched,psched))

Def : £(act,psched)

V(sched)
domain(psched) C domain(sched) A

i € domain(psched)
=> psched(i).est < sched(i).st < psched(i).lst

=^ V(fc,«i,*2,i,Ä,y) . , _„ 1X
k (E domain{pes(psched)) A *i = pes{psched)(k) A *2 = pes{psched){k + I)
A j € domain(psched) ARC ACPR A |£| = T A

E*gÄ A „„«,?(*,<«, ,ta>,p.c*e«*) 1 = T A y € ACPR/R
A sacpn(t,psched) A affects!(j,y)
=► sched{j).ft <UB V sched{j).st > LB

Since: A A 5 =^ C

V(sc/ied)
domain(psched) C domain(sched)

i £ domain(psched)
=> psched(i).est < sched(i).st < psched(i).lst

35

* V(Mi,*2,j,Ä,y)
k G domain(pes(psched)) A *i = pes(psched)(k) A *2 = pes(psched)(k + 1)
A ;' € domain{psched) A Ä C ACPi? A |Ä| = T A

EzGÄ A uno«?(r,<t1,t2>,psc/ied) 1 = T A T/ G ACPR/R

A sacpn(t,psched) A affectsl{j,y)
=► sched(j).ft <UB V sched(j).st > LB

Rearranging quantifiers

V(sc/jec?)
domain(psched) C domain(sched)
=► v(0

i G domain(psched)
=4> psched(i).est < sched(i).st < psched(i).lst

=>- V(j) j G domain(psched) A
V(Mi,*2,#,y)
A; G domain(pes(psched)) A
<! = pes(psched)(k) A t2 = pes(psched)(k + 1)
A Ä C ACPÄ A |Ä| = T A

E^efi A unai;?(:F)<ti,*2>,psc/ied) 1 = ^ A J/ G ACPR/R

A sacpU(t,psched) A affects!(j,y)
=» sched(j).ft <UB V sched(j).st > LB

Since: AAß=>C

■5 =» C

V(sc/iecQ
domain(psched) C domain(sched)
=► V(i)

i G domain(psched)
=>- psched(i).est < sched(i).st < psched(i).lst

=$■ V(j) j G domain(psched)

=> V(fc,«i,<2,Ä,y)
A; G domain(pes(psched)) A

36

1

4

h = pes{psched)(k) A t2 = pes(psched){k + 1)
A R C ACPPt A |ß| = T A
v ,, ' , . u * 1 = T A w € ACPR/R
A sacpll{t,psched) A affectsl{j,y)
=»' sched{j).ft < UB V sched(j).st > LB

Since: V(K)# € S =* P(#)
—s.

V(tf)tf € 5 =» P(A') =► Q(#)

V(sc/ied)
domain(psched) C domain(sched)

=* V(z)
i 6 domain(psched)
=* psched(i).est < sched(i).st < psched(i).lst

=► y{k,h,t2,R,y)
k G domain(pes(psched)) A
<i = pes(pscftecO(fc) A *2 = pes(psched){k + 1)
A i? C ACPP A |Ä| = T A
v , . - l = T A « € ACPR/R

A sacpl?{t,psched) A affects?[i,y)
=► sched{i).ft <UB V sched(i).st > LB

Since: A =► P =► C
4=>

V(sc/iee?)
domain(psched) C domain(sched)

=» v(0.
z e domain(psched)

37

=>• psched(i).est < sched(i).st < psched(i).lst

AV(fc,M2,#,y)
k G domain(pes(psched)) A
ti = pes(psched)(k) A t2 = pes(psched)(k + 1)
A RC ACPR A \R\ = T A

Exefl A unau?(i,<ti,t2>,psc/ied) 1 = T A J/ G ACPR/R
A sacpl?(t,psched) A affects7{i,y)
=► sched(i).ft <UB V sched(i).st > LB

Since: A => (5 A C)

(A A B) =4 C

V(sc/ieeZ)
domain(psched) C domain(sched)

=► V(«)
i G domain(psched) A
V(Ä:,<i,«2,J>-R,y)
A; G domain(pes(psched)) A
<! = pes(psched)(k) Ai2= pes(psched)(k + 1)
A Ä C ACP# A |Ä| = T A

Eseß A unoi;?(a;,<ti,*2>,p5c/ied) 1 = T A J/ G ACPR/R
A sacpP.{t,psched) A affects1{j,y)

sched(i).st < psched(i).lst
psched(i).est < sched(i).st
=» sched(i).ft <UB V sched(i).st > LB

Treating one disjunct:

V(sc/iee?)
domain(psched) C domain(sched)

i G domain(psched) A
V(fc,*i,*2,J,-R,y)
fc G domain(pes(psched)) A

38

ti = pes(psched)(k) A t2 = pes(psched)(k + 1)
A R C ACPß A |Ä| = T A

Eiefl A unav?(x,<tut2>,psched) 1 — T A ?/ G ACPR/R
A sacpll(t,psched) A affectsl(j,y)

sched(i).st < psched(i).lßt
=$■ psched(i).est < sched(i).st

=4> LJB < sched(i).st

Replacing sched with qsched:
domain(qshed) = domain(psched)
V(a) a € domain(qshed)

=>■ qsched(a) = sched(a)
(Assuming that each activity has the
same index in psched, qsched, and sched)

Since: (A' => A) A {A =►■ B)

(A1 =* B)

V(qsched)
domain(psched) C domain(qsched)

i € domain(qsched)) A

V(fc,«i,<2,j,Ä,y)
& 6 domain(pes(psched)) A
<i = pes(psched)(k) A t2 = pes(psched)(k + 1)
A RCACPR A |Ä| = TA

Exgfl A unat;?(x,<ti,t2>,psc'ied) I =T A y E ACPR/R
A sacpl?(t,psched) A affectst(j,y)

qsched(i).st < psched(i)Jst
=> psched(i).esi < qsched(i).st

=3- Li? < sched(i).st

Since: V(m) S(m)

V(a) a € domam(ra) A T(a)
=> (p(a) < m(a) =£> </(a) < m(a))

39

S(p) A V(a) a € domain(p) A r(o)

V(i)
i € domain(psched) A

V(Mi,<2,J,Ä,y)
& € domain(pes(psched)) A
<! = pes(pseÄed)(fc) A i2 = pes(psched)(k + 1)
AiJC ACPÄ A |Ä| = T A

ExeÄ A tmat>?(*I«ilt2>,P«cfce<0 1 = T A 2/ € ACPR/R
A sacpl?(t,psched) A affects'! (j,y)
=$■ LB < psched(i).est

Treating the second disjunct:

V(sched)
domain(psched) C domain(sched)
=► v(i)

i G domain(psched) A

V(Mi,t2,j,-R,y)
A; € domain(pes(psched)) A
<i = pes(psched)(k) A i2 = pes(psched)(k + 1)
A Ä C ACTÄ A |Ä| = T A

ErgÄ A unat>?(s,<ti,t2>,p*cfced) 1 = 2"* A J/ € ACPR/R

A sacpP.(t,psched) A affects?(j,y)
psched(i).est < sched(i).st
=4* sched(i).st < psched(i).lst

=► sched(i)~ft < UB

Since: sched(i).ft < UB

sched(i).st < UB - sched(i).duration

40

V(sched)
domain(psched) C domain(sched)

=► v(i)
i 6 domain(psched) A

V(Mi,*2,j,Ä,y)
jfc G domain(pes(psched)) A
ix = pes(|MCÄe(f)(k) A t2 = pes(psched)(k + 1)
AÄC ACPi? A |Ä| = T A

£.£* A unav->(x,<tut2>,psched) 1 = T A J/ € ACPR/R
A sacpll(t, psched) A affects?(j,y)

psched(i).est < sched(i).st
=^ sched(i).st < psched(i).lst

==> sched(i).st < UB - sched(i).duration

Replacing sched with qsched:
domain(qshed) = domain(psched)
V(a) a € domain(qshed)

==$■ qsched(a) = sched(a)
(Assuming that each activity has the
same index in psched, qsched, and sched)

Since: (A' =► A) A {A =► B)

(A' => B)

\/(qsched)
domain(psched) C domain(qsched)

==► V(t)
i G domain(qsched)) A

V(fc,ti,i3,J,A,y)
fc £ domain(pes(psched)) A
tj = pes(psc/ied)(A;) A<2 = pes(psched)(k + 1)
A £ C ACPE A \R\ = TA

ExtR A unoi;?(*,<«i,ta>rf'»cfc«0 1 = T A ^ € ACPRIR

A sacpll(t, psched) A affectsl(j,y)
psched(i).est < qsched(i).st
==>■ qsched(i).st < psched(i).lst

=► qsched(i).st <UB - qsched(i).duration

41

Since: V(m) S(m)

V(a) a € domain(m) A T(a)
=£• (m(a) < p(a) =3> m(a) < q(a))

S(p) A V(a) a € domain(p) A T(a)

=* (l>(a) < ?(a)

v(0
i G domain(psched) A

V(fc,*i,<2,i,-ß,y)
A; G domain(pes(psched)) A
£1 = pes(psched)(k) A £2 = pes(psched)(k + 1)
A RCACPR A |Ä|=TA

SxGÄ A uno«?(ar,<ti,t2>,pscÄed) 1 = ^ A 2/ € ACPR/R

A sacpl!(t,psched) A affects'! (j,y)
=$■ psched(i).lst < UB — pched(i).duration

Since: psched(i).lst < UB — pched(i).duration

psched(i).lft < UB

V(i)
z € domain(psched) A

V(Mi,*2,i,-R,y)
A; G domain(pes(psched)) A
£1 = pes(psched)(k) A <2 = pes(psched)(k + 1)
A RCACPR A |Ä|=TA

Z/zeß A unat;?(a;,«1,<2>,pscAed) 1 = -* A ?/ G ACPR/R

A sacpl1{t,psched) A affects!(j,y)
=4> psched(i).lft < UB

42

Appendix C - Domain Theory for the Outage
Problem

!! in-package("RE")
!! in-grammarOTHEORY-GRAMMAR, 'REGROUP)

THEORY SAFE-OUTAGE

I
THEORY-IMPORTS {}

I
THEORY-TYPE-PARAMETERS O

y,
THEORY-TYPES

yt Basic Types
type time = integer

type quantity = integer

type state-res = symbol

type acploss-i = integer */,(0 - yes ; 1 no)

type list-av-ress = set(state-res)

type set-of-acts-acploss = set(activity)

type state-type
= tuple(acploss?: acploss-i,
num-unav-ress: integer,
unav-res-map: map(symbol, set(symbol)),
list-av-ress:set(state-res))

type st-hist-map = map(time, state-type)

'/, dependent on the input data
constant *initial-state-map*: st-hist-map

= -CIO -> < 1, 0, {||}, { 'divl, 'div2, 'div3, 'div4, 'sulO, 'su20 }>|}

43

type pred-succ-act
= tuple(id: symbol, lag: integer, tie: symbol)

•/, Activity
type activity = tuple(act-name : symbol,

predecessors : seq(pred-succ-act),
duration : integer,
est : integer,
1st : integer,
st : integer,
ft : integer,
effect-set: set(symbol)

)

Schedule

type sched = seq(activity)

'/0 State Related Types and Constants

constant *acp-sources* : map(symbol , seq(symbol))
= {I 'on-site -> ['divl, 'div2, 'div3, Jdiv4],

'off-site -> ['sulO, Jsu20],
'control-variable -> ['acploss] 1}

%

THEORY-OPERATIONS
JJ
'/, resources are assumed to be unlimited

•/, Top Level Functions

function pos-safe-outage
(def-sched: seq(activity)

I size(def-sched) > 0
& Consistent-Activity-Separation-EST(def-sched)
& Consistent-Activity-Separation-LST(def-sched)
& Consistent-ac-power-propl(def-sched,

construct-state-map-def(def-sched))
& Consistent-ac-power-prop2(def-sched,

construct-state-map-def(def-sched)))

44

returns (schedule: seq(activity)
I consistent-ac-power(schedule)
& All-activities-scheduled(def-sched, schedule))*/, completeness

function safe-outage-windows
(activities: seq(activity)I size(activities) > 0)

returns (schedule: seq(activity) I
Consistent-Activity-Separation-EST(schedule) &

Consistent-Activity-Separation-LST(schedule) &
Consistent-ac-power(schedule)&
All-activities-scheduled(activities, schedule))!/, completeness

mmmmmmmmmn consistent Activity-separation nnnmmnm

function Consistent-Activity-Separation-EST

(schedule : seq(activity))

: boolean
= fa (i : integer, j :integer, act : activity)

(i in [1 .. size(schedule)]
& j in [1 .. size(schedule(i).predecessors)]
& act = get-activity(schedule, schedule(i).predecessors(j))

& defined?(act)
=> (act.est + act.duration + schedule(i).predecessors(j).lag)

<= scheduled) .est)

function Consistent-Activity-Separation-LST

(schedule : seq(activity))

: boolean
= fa (i : integer, j :integer, w: integer)

(i in [1 .. size(schedule)] &
j in [1 .. size(schedule(i).predecessors)] &
w = get-activity-index(schedule, schedule(i).predecessors(j).1)

=> (schedule(i).lst - schedule(w).duration >= schedule(w).1st))

xxxxxmxxmxxxxxmmxxxxx consistent Ac-power xxmxxxxxxxxxxxxmxxxmxxx
function Consistent-ac-power

(schedule: sched) : boolean
= let (state-hist-map: st-hist-map

= construct-state-map(schedule))

45

fa (tl:integer)

(tl in domain(state-hist-map)

=> state-hist-map(tl).num-unav-ress
<= (1 + state-hist-map(tl).acploss?))

mmmmmmmnmi state-of-piant x%xxx%xxxxx%%xx%%%%%xxx%%%xx%xx%

function Construct-state-map(schedule: sched)

: st-hist-map
= construct-state-map-aux(schedule, *initial-state-map*)

function Construct-state-map-aux(schedule: sched, init-st-hist: st-hist-map)

: st-hist-map

= if empty(schedule)

then init-st-hist

else if empty(first(schedule).effect-set)

then construct-state-map-aux(rest(schedule), init-st-hist)

else construct-state-map-aux(rest(schedule),

init-st-hist +* add-act-map(first(schedule),

first(schedule).effect-set,

first(schedule).st,
first(schedule).ft, init-st-hist))

function add-act-map

(act: activity,
list-effects: set(symbol),

tl: time, t2: time,
state-hist-map: st-hist-map)

: st-hist-map

= if tl >= t2

then {||}
else (let (start-event-map: st-hist-map

= add-event-map-seq(act,list-effects,

tl, t2, state-hist-map))

start-event-map
+* add-event-map(act,list-effects, t2, 'f,

state-hist-map +* start-event-map))

function fd-def-app

(act: activity, ps: seq(activity),

list-effects: set(symbol),

46

tl: time, t2: time,
state-hist-map: st-hist-map)

: st-hist-map

= if tl >= t2
then{||}
else *call-def* <- append(*call-def*, <act, tl, t2, 'app>);

(let (start-event-map: st-hist-map
= add-event-map-seq(act,list-effects,

tl, t2, state-hist-map))

start-event-map
+* add-event-map(act,list-effects, t2, 'f,

state-hist-map +* start-event-map))

function fd-def-ext-est

(ind: integer, ps: seq(activity),
list-effects: set(symbol),

tl: time, t2: time,
state-hist-map: st-hist-map)

: st-hist-map
= let (begin-time: integer= max(tl,ps(ind).1st))

(if ps(ind).1st >= t2

then {||}
else *call-def* <- append(*call-def*, <ps(ind), tl, t2, 'est>);

(let (start-event-map: st-hist-map
= add-event-map-seq(ps(ind),list-effects,

begin-time, t2, state-hist-map))
start-event-map
+* add-event-map(ps(ind) ,list-effects, t'2, 'f,

state-hist-map +* start-event-map)))

function fd-pos-ext-est
(ind: integer, ps: seq(activity),
list-effects: set(symbol),

tl: time, t2: time,
state-hist-map: st-hist-map)

: st-hist-map */, returns all the entries that changed

= if tl >= t2
then {||}
else (let (start-event-map: st-hist-map

= del-event-map-seq(ps(ind),list-effects, tl, t2, state-hist-map))

(start-event-map +* add-event-map(ps(ind),list-effects, t2, 's,

state-hist-map +* start-event-map)))

47

function fd-pos-ext-lst

(ind: integer, ps: seq(activity),

list-effects: set(symbol),

tl: time, t2: time,

state-hist-map: st-hist-map)
: st-hist-map '/, returns all the entries that changed
= if tl >= t2

then {||}
else (let (start-event-map: st-hist-map

= del-event-map-seq(ps(ind),list-effects, tl, t2, state-hist-map))

start-event-map +* add-event-map(ps(ind),list-effects, t2, 'f,

state-hist-map +* start-event-map))

function fd-def-ext-lst
(ind: integer, ps: seq(activity),

list-effects: set(symbol),

tl: time, t2: time,
state-hist-map: st-hist-map)

: st-hist-map

= let (end-time: integer= min((ps(ind).est + ps(ind).duration), t2))

(if tl >= (ps(ind).est + ps(ind).duration)

then{||}
else (let (start-event-map: st-hist-map =

add-event-map-seq(ps(ind),list-effects,

tl, end-time, state-hist-map))
(if end-time = t2 & t2 ~= ps(ind).est + ps(ind).duration

then start-event-map

else (start-event-map +* add-event-map(ps(ind),

list-effects, end-time, 'f,
state-hist-map +* start-event-map)))))

function add-event-map-seq

(act: activity,

list-effects: set(symbol),
tl: time, t2: time,

48

state-hist-map: st-hist-map)
: st-hist-map
= let (seq-time: seq(integer)=

sort([x I (x) x in domain(state-hist-map)
& x > tl &

x < t2], lambda(al, a2) al <= a2),
event-before: state-type =

get-event-before(tl, state-hist-map))
let (update-first: st-hist-map =

{| tl -> update-status-start(tl, act.act-name,
event-before,list-effects)|})

add-event-map-rec(act, list-effects, seq-time,
state-hist-map+* update-first, update-first)

function add-event-map-rec

(act:activity,
list-effects: set(symbol),

seq-time: seq(integer),
state-hist-map: st-hist-map,

init-map: st-hist-map)
= if empty(seq-time)

then init-map
else let (add-first: st-hist-map = add-event-map(act, list-effects,

seq-time(l), 's ,
state-hist-map))

add-event-map-rec(act, list-effects, rest(seq-time),

state-hist-map +* add-first,

init-map +* add-first)

function add-event-map

(act: activity,
list-effects: set(symbol),
tl: time, type-s: symbol,
state-hist-map: st-hist-map)

: st-hist-map
= (let (event-before: state-type
= get-event-before(tl, state-hist-map))

if type-s = 's
then -U tl ->

49

update-status-start(tl, act.act-name, event-before,list-effects) 1}
else -C| -tl ->

update-status-finish(tl, act.act-name, event-before,list-effects)|})

'/, this should be del-partial-act-map

function del-act-map
(act: activity,

list-effects: set(symbol),

tl: time, t2: time,

state-hist-map: st-hist-map)

: st-hist-map '/, returns all the entries that changed
= if tl >= t2

then {||}

else (let (start-event-map: st-hist-map

= del-event-map-seq(act,list-effects, tl, t2, state-hist-map))
if t2 = act.1st + act.duration

then (start-event-map +* add-event-map(act,list-effects, t2, 'f,
state-hist-map +* start-event-map))

else if tl = (act.est + act.duration)

then (start-event-map +* add-event-map(act,list-effects, t2, 's,
state-hist-map +* start-event-map))

else start-event-map)

function del-event-map-seq
(act: activity,

list-effects: set(symbol),
tl: time, t2: time,

state-hist-map: st-hist-map)
: st-hist-map

= let (seq-time: seq(integer)=

sort([x I (x) x in domain(state-hist-map)
& x > tl &

x < t2], lambda(al, a2) al <= a2),

event-before: state-type = get-event-before(tl, state-hist-map))
let (update-first: st-hist-map=

{I tl ->

update-status-finish(tl, act.act-name, event-before,list-effects)|})
del-event-map-rec(act, list-effects, seq-time,

state-hist-map +* update-first, update-first)

50

function t-find-event-before
(tl: integer, ml: map(integer,set(integer)))

: set(integer)
= ml(t-time-before-in-domain(ml,tl, ml(tl)))

function t-time-before-in-domain
(ml: map(integer,set(integer)), i-ti: integer, i-ti-val: set(integer))

: integer =
let (val = undefined)

ti-val = ml(ti)

& ti < i-ti
& (defined?(val) => ti > val)

—> val <- (val; ti);

val

function del-event-map-rec

(act:activity,
list-effects: set(symbol),

seq-time: seq(integer),
state-hist-map: st-hist-map,

init-map: st-hist-map)

= if empty(seq-time)

then init-map
else let (add-first : st-hist-map= add-event-map(act, list-effects,

seq-time(l), 'f ,
state-hist-map))

del-event-map-rec(act, list-effects, rest(seq-time),
state-hist-map +* add-first,
init-map +* add-first)

function get-event-before
(tl: time, state-hist-map: st-hist-map)
: state-type
= if defined?(state-hist-map(tl))

then state-hist-map(tl)
else find-event-before(tl, state-hist-map)

function find-event-before
(tl: time, state-hist-map: st-hist-map)
: state-type
= state-hist-map(time-before-in-domain(state-hist-map,

51

tl, state-hist-map(tl)))

function value-in-interval-map

(size-def-reserv-m: map(time, alpha), i-ti: time)

: alpha =
let (var val = 0, var prev-dom-el = undefined)

ti-val = size-def-reserv-m(ti)

& ti <= i-ti
& (defined?(prev-dom-el) => ti > prev-dom-el)

—> (val <- (val; ti-val); '/, This is a hack to avoid an early stop

prev-dom-el <- (prev-dom-el; ti));

val

function load-map-equal?

(ml: st-hist-map, m2: st-hist-map): boolean =

fa(ti) (ti in domain(ml) union domain(m2)
=> value-in-interval-map(ml, ti) = value-in-interval-map(m2, ti))

function time-before-in-domain
(state-hist-map: map(time, state-type), i-ti: time, i-ti-val: state-type)

: time =
let (val = undefined)

ti-val = state-hist-map(ti)

& ti < i-ti
& (defined?(val) => ti > val)

—> val <- (val; ti);

val

function time-after-in-domain
(i-ti: time, i-ti-val: quantity,

def-state-map: map(time, state-type)): time =
let (val = undefined)
ti-val = def-state-map(ti).num-unav-ress - def-state-map(ti).acploss?

& td-val "- i-ti-val
& ti > i-ti
& (defined?(val) => ti < val)

—> val <- (val; ti);
val

function update-status-start(tl: time, a-name: symbol,
state-e-before: state-type, 1-effects: set(symbol))

52

: state-type
= let (new-acp-status: integer

= (if 'acploss in 1-effects

then 0
else state-e-before.acploss?),

new-num-used-res: integer

= state-e-before.num-unav-ress
+ size(intersect(l-effects, state-e-before.list-av-ress)),

new-unav-res-map: map(symbol,set(symbol))

={|x->
update-res-map(x, state-e-before.unav-res-map, a-name, 1-effects)

| (x) x in union(domain(state-e-before.unav-res-map),

1-effects)I},
new-av-list: set(symbol)

= setdiff(state-e-before.list-av-ress, 1-effects))

< new-acp-status,

new-num-used-res,

new-unav-res-map,

new-av-list >

function update-status-finish
(tl: time, a-name: symbol, state-e-before: state-type,

1-effects: set(symbol))

: state-type
= let (new-acp-status: integer

= if 'acploss "in 1-effects
then state-e-before.acploss?

else (let (acts = state-e-before.unav-res-map('acploss))

if defined?(acts)
& acts-less-act-named(acts, a-name) ~= {}

then 0

else 1),
new-num-used-res: integer

= size({ x I (x: symbol, acts)
acts = state-e-before.unav-res-map(x)

& defined?(acts)

& x "= 'acploss
& acts-less-act-named(acts, a-name) ~= {}}) ,

new-unav-res-map: map(symbol,set(symbol))

= {I x -> new-acts
| (x, acts, new-acts) acts = state-e-before.unav-res-map(x)

& defined?(acts)
& new-acts = acts-less-act-named(acts, a-name)
& new-acts ~= {} I»

let (new-av-list: set(symbol)

53

= setdiff(*initial-state-map*(0).list-av-ress,
domain(new-unav-res-map)))

< new-acp-status,

new-num-used-res,

new-unav-res-map,

new-av-list >

function update-res-map

(res: symbol, res-map: map(symbol, set(symbol)), a-name: symbol,
1-effects: set(symbol))

: set(symbol)

= if res in 1-effects

then if defined?(res-map(res))
then res-map(res) with a-name
else {a-name}

else if defined?(res-map(res))
then res-map(res)

else {}

function act-named-in?(nm: symbol, acts: set(activity)): boolean =
ex(actl: activity)(actl in acts & actl.act-name = nm)

function acts-less-act-named(acts: set(symbol), nm: symbol): set(symbol)
filter(lambda(actl: symbol) actl ~= nm,

acts)

xxxxxxxxxxxxxxxxxxxxxx Def-state-of-piant xxxxxxxxxxxxxxxxxxxxxxx

function Construct-state-map-def(schedule: sched)
: st-hist-map

= construct-state-map-def-aux(schedule, *initial-state-map*)

function Construct-state-map-def-aux

(schedule: sched, init-st-hist: st-hist-map)
: st-hist-map

= if empty(schedule)
then init-st-hist

else if empty(first(schedule).effect-set)

then construct-state-map-def-aux(rest(schedule), init-st-hist)

else construct-state-map-def-aux(rest(schedule), init-st-hist
+* add-act-map(first(schedule),

54

first(schedule).effect-set,

first(schedule).1st,

first(schedule).est
+ first(schedule).duration ,

init-st-hist))

%i%%m%%mm%mm%%m pos-state-of-piant %mm%%%m%%%mmm

function Construct-state-map-pos(schedule: sched)
: st-hist-map
= construct-state-map-pos-aux(schedule, *initial-state-map*)

function Construct-state-map-pos-aux
(schedule: sched, init-st-hist: st-hist-map)

: st-hist-map
= if empty(schedule)

then init-st-hist
else if empty(first(schedule).effect-set)

then construct-state-map-pos-aux(rest(schedule), init-st-hist)
else construct-state-map-pos-aux(rest(schedule), init-st-hist

+* add-act-map(first(schedule),

first(schedule).effect-set,

first(schedule).est,
first(schedule).1st
+ first(schedule).duration, init-st-hist))

function longest-highest-poss-excess-interval

(poss-state-map: map(time, state-type))

: tuple(time, time) =
let (var best-dom-val = undefined,

var best-ran-val = undefined,
var best-after-dom-val = undefined)

ti-val = poss-state-map(ti).num-unav-ress - poss-state-map(ti).acploss?

& ti-val > 1
& (defined?(best-dom-val)

=> ti-val > best-ran-val
or (ti-val = best-ran-val

& time-after-in-domain(ti, ti-val, poss-state-map) - ti

> best-after-dom-val - best-dom-val))
—> (best-dom-val <- (best-dom-val; ti);

best-ran-val <- (best-ran-val; ti-val);

best-after-dom-val
<- time-after-in-domain

(best-dom-val, best-ran-val, poss-state-map));

55

if defined?(best-dom-val) & defined?(best-after-dom-val)
then <best-dom-val, best-after-dom-val - 1>

else undefined

function maximally-poss-act-in-poss-interval

(sched: seq(activity), i-ti: time, e-ti: time,

unav-res: map(symbol, set(symbol)))

: integer =

let (var max-poss-act = undefined,

var max-poss-time = undefined,

var max-poss-indx = undefined,

sel-resource = get-least-committed-res(unav-res))

(enumerate act over unav-res(sel-resource) do

let (ti: integer = get-activity-index(sched, act))

let (act-poss-time = poss-time-in-interval(sched(ti), i-ti, e-ti))
if (defined?(max-poss-time) => act-poss-time > max-poss-time)
then max-poss-act <- act;

max-poss-indx <- ti;

max-poss-time <- act-poss-time);

% format (true, ""'/, selected resource :"S~*/,selected activity :~S",
'/, sel-resource, max-poss-act);
max-poss-indx

function get-least-committed-res(unav-res : map(symbol, set(symbol)))
: symbol

= first(sort([x I (x) x in domain(unav-res)],
lambda(al: symbol, a2: symbol)

(size(unav-res(al)) < size(unav-res(a2)))))

function poss-time-in-interval

(act: activity, i-ti: time, e-ti: time): time =

let (est = act,est,

1st = act.1st,

dur = act.duration)
let (eft = est + dur,

lft = 1st + dur)
if est = 1st then 0

else max(min(lft, e-ti + 1) - max(eft, i-ti),
min(lst, e-ti) + 1 - max(est, i-ti))

56

function poss-interval-split-time
(act: activity, i-ti: time, e-ti: time): time =

let (est = act.est,
1st = act.1st,
dur = act.duration)

let (eft = est + dur,
lft = 1st + dur)

let (max-est = max(est, i-ti),
min-lst = min(lst, e-ti),
max-eft = max(eft - 1, i-ti),

min-lft = min(lft - 1, e-ti))

if est = 1st then undefined

else
if min-lst - max-est >= min-lft - max-eft

then (max-est + min-lst) div 2
- (if max-est = min-lst & est < max-est

then 1 else 0)
else (max-eft + min-lft) div 2 - dur

+ (if max-eft = min-lft & eft <= max-eft

then 0 else 1)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Aii-activities-scheduiedxxxxxxxxxxxxxxxxxxxxxx
function All-activities-scheduled

(activities: seq(activity),

schedule : seq(activity))

: boolean
= included-activities(activities) = included-activities(schedule)

function Included-activities(activities : seq(activity))

: set(symbol)
= seq-to-set(image(lambda (act : activity)

act.act-name,
activities))

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXSort Input xxxxxxxxxxxxxxxxxxxxxxxxxxx
function sort-activities (activities : seq(activity)) : seq(activity)

= image(lambda(x : tuple(activity, seq(activity))) x.l,

sort(image(lambda(y) <y, activities>, activities),

sort-criteria))

function get-level(act : activity, acts : seq(activity)) : integer

computed-using

57

empty(act.predecessors) => get-level(act, acts) = 0,

true => get-level(act,acts) = 1 + reduce(lambda(x,y) if y < x then x else y,

image(lambda(y) get-level(y, acts),

image(lambda(x) get-activity(acts, x),

act.predecessors)))

function sort-criteria (actl : tuple(activity, seq(activity)),

act2 : tuple(activity, seq(activity))) : boolean
= let (keyl-1 : integer = get-level(actl.l, act1.2),

keyl-2 : integer = get-level(act2.1, act2.2),

key2-l : integer = actl.1.1st - actl.l.est - actl.1.duration,

key2-2 : integer = act2.1.1st - act2.1.est - act2.1.duration)

if (keyl-1 < keyl-2) then true

else (keyl-1 = keyl-2) & (key2-l < key2-2)

nnnnnnuvmnnnnvk Misc mmmr/.mrar/.r/.r/,

function get-activity

(activities : seq(activity), act-s : pred-succ-act)

: activity
= first(filter(lambda(x: activity) x.act-name = act-s.id, activities))

function get-activity-index

(activities : seq(activity), name : symbol)
: integer
= some (indxO : integer)

(indxO in domain(activities) & name = activities(indxO).1)

UV/XUU Printing functions IVkVkWX

function print-problem-gannt(prob-acts: seq(activity)) =
(enumerate act: activity over prob-acts do

print-gannt-line(act.act-name, act.est, act.1st, act.duration));
format (true, " ~9®a~ 10Qa" 10@a~ 10Sa~ 109a~ lOOa"'/.",
0, 10, 20, 30, 40, 50);
values()

function print-ascii-gannt(sched: seq(activity)) =
let (width = reduce(max,

image(lambda (act: activity) act.1st + act.duration,
sched)))

58

let (scale-factor = if width < 100 then 1 else width div 100 + 1)

(enumerate act: activity over sched do

print-gannt-line

(act.act-name,

act.est div scale-factor,

act.1st div scale-factor,

max(l, (act.duration - 1) div scale-factor + 1)));

format(true, "~9Qa", 0);
(enumerate sn over [1 .. width div scale-factor div 10] do

format(true, "~10@a", sn * 10 * scale-factor));

format(true, ""%");
values()

function print-gannt-line(nm: symbol, est: time, 1st: time, dur: time)

let (est = est + 1, '/, because zero-based

1st = 1st + 1)

let (eft = est + dur - 1,
lft = 1st + dur - 1)

if est = lft
then format (true, "~8a~v@a~y.",

nm, est, "*")

elseif 1st = est
then format (true, "~8a~v@a~v,,, ,*@a~y.",

nm, est, "<*', lft - 1st, ">")

elseif 1st < eft
then format (true, "~8a~v<aa~v,,, '-Qa"v,,, '*Sa~v,,, '-Qa"'/.",

nm, est, "(", 1st - est, ")", eft - 1st, "[", lft - eft, "]")

elseif 1st = eft
then format (true, " ~8a~vQa~v,,,' -Qa~v,,,' -Qa"*/,",

nm, est, "(", 1st - est, "X", lft - eft, "]")
else format (true, ""8a~vQa"v,,, '-Qa"v,,, '-@a~v,,, '-©a"*/." ,

nm, est, "(", eft - est, "[", 1st - eft, ")", lft - 1st, "3")

function print-ascii-hist
(hist: map(time, state-type), sched: seq(activity), scale?: boolean)

let (height = reduce(max, image(lambda (st: state-type)

st.num-unav-ress - st.acploss?,

range(hist))),
width = reduce(max,
image(lambda (act: activity) act.1st + act.duration,

sched)))
let (scale-factor = if width < 100 then 1 else width div 100 + 1)

(enumerate j over [0 .. height] do

59

let (i = height - j,

var this-h = 0,

var ign-ctr = 0)

format(true, "~7Qa ", i);

(enumerate k over [0 .. width] do

let (st: state-type = hist(k))

this-h <- (if defined?(st)

then st.num-unav-ress - st.acploss?

else this-h);

ign-ctr <- ign-ctr +1;

if ign-ctr = scale-factor

then princ(if this-h = i then "-" else " ");

ign-ctr <- 0);

format (true, "*"/,"));

(if scale? then

format(true, "~9@a", 0);

(enumerate sn over [1 .. width div scale-factor div 10] do

format(true, "~10Qa", sn * 10 * scale-factor));

format(true, ""%"));
values()

function print-ascii-gannt-and-poss-hist(sched: seq(activity)) =

print-ascii-gannt(sched);
print-ascii-hist(construct-state-map-pos(sched), sched, false)

mmmmmmmmmr/. GS operators & functions iv/xiniinvixvixni
mmmy.mr/.r/. Refinement Order mmmvx/.w/:/:a

y, p-sched refines to qsched ; p-state-hist refines to q-state-hist
'/ p-state-evs refines to q-state-evs

'I, drs 20ct95: reversed the order of 1st inequality

function REFINES-T0
(p-sched : sched, q-sched : sched) : boolean

= (size(p-sched) <= size(q-sched)
& fa(i : integer)

(i in [1 .. size(p-sched)]

=> (p-sched(i).est <= q-sched(i).est &

q-sched(i).1st <= p-sched(i).1st

)))

function SEQ-SATISFIES
(p-sched : seq(activity), sched : seq(activity)) :boolean

= refines-to(p-sched, sched)

60

%%%%U%%%%%%%%%%%%%n%%mX%%%%%% Inferred Safety Constraints %U%%%U%%%%%%

function Consistent-ac-power-filter(p-schedule: sched,

def-state-map: st-hist-map)

: boolean
= fa (tl:integer, act: integer)

(tl in domain(def-state-map) & act in domain(p-schedule) &

"empty(p-schedule(act).effect-set)

& "empty(intersect(p-schedule(act).effect-set,

def-state-map(tl).list-av-ress))

=> def-state-map(tl).num-unav-ress <=
(1 + def-state-map(tl).acploss?))

function Consistent-ac-power-propl(p-schedule: sched,
def-state-map: st-hist-map)

: boolean
= fa (tl:integer, t2:integer, act: integer)

(tl in domain(def-state-map) & act in domain(p-schedule)

& "empty(p-schedule(act).effect-set)
& t2 = find-time-after(tl, def-state-map(tl), def-state-map)

& defined?(t2) &
def-state-map(tl).num-unav-ress = (1 + def-state-map(t1),acploss?)&

"empty(intersect(p-schedule(act).effect-set,
def-state-map(tl).list-av-ress))

& (p-schedule(act).est > (tl - p-schedule(act).duration))

=>

t2 <= p-schedule(act).est)

function Consistent-ac-power-prop2(p-schedule: sched,
def-state-map: st-hist-map)

: boolean
= fa (tl:integer, t2:integer, act: integer)

(tl in domain(def-state-map) & act in domain(p-schedule)

& "empty(p-schedule(act).effect-set)&
t2 = find-time-after(tl, def-state-map(tl), def-state-map)

& defined?(t2) &

61

def-state-map(tl).num-unav-ress = (1 + def-state-map(tl).acploss?)&
"empty(intersect(p-schedule(act).effect-set,

def-state-map(tl).list-av-ress))
& t2 > p-schedule(act).1st

=> (p-schedule(act).1st
<= tl - p-schedule(act).duration))

function find-time-after(tl: time, tl-val: state-type,
def-state-hist-map: st-hist-map)

: time
= let (val = undefined)

ti-val = def-state-hist-map(ti)
& ti > tl
& (defined?(val) => ti < val)
—> val <- (val; ti);

val

'/,-- Extract

function new-activity
(act-i : activity) : activity
= act-i.ft <- act-i.est + act-i.duration;

act-i.st <- act-i.est;
act-i

function Extract-schedule
(ps : seq(activity)) : sched
= [new-activity(ps(i))

I (i:integer)
i in domain(ps)]

function excess-poss?
(int : tuple(time, time)) : boolean
= defined?(int)

'/. —-

mmmnnm

62

THEORY-LAWS

yo . Finite Difference

y.y.y.'/, DEFINITE

assert DISTRIBUTE-const-def-STATE-map-DVER-EMPTY

fa ()
(construct-state-map-def([]) = *initial-state-map*)

assert DISTRIBUTE-const-def-STATE-map-OVER-APPEND
fa (ps: sched, qs:sched, act: activity)

(construct-state-map-def(append(ps, act))
= construct-state-map-def(ps) +*

fd-def-app(act, ps, act.effect-set,
act.1st, act.est + act.duration,
construct-state-map-def(ps)))

assert DISTRIBUTE-CONST-def-STATE-map-OVER-EXTEND-EST
fa (ps: sched, qs:sched, i:integer, n-est: time)

(construct-state-map-def(seq-shadowl(ps, i,
tuple-shadow(ps(i).est,

n-est)))
= construct-state-map-def(ps)

+* fd-def-ext-est(i, ps, ps(i).effect-set,
ps(i).est + ps(i).duration,
n-est + ps(i).duration,
construct-state-map-def(ps)))

assert DISTRIBUTE-CONST-def-STATE-map-OVER-EXTEND-lst
fa (ps: sched, qs:sched, i:integer, n-lst: time)

(construct-state-map-def(seq-shadowl(ps, i,
tuple-shadow(ps(i).1st,

n-lst)))
= construct-state-map-def(ps) +*

fd-def-ext-lst(i, ps, ps(i).effect-set,
n-lst, ps(i).lst, construct-state-map-def(ps)))

VI.VI. POSSIBLE
assert DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-EST
fa (ps: sched, qs:sched, i:integer, n-est)

(construct-state-map-pos
(seq-shadowl(ps, i, tuple-shadow(ps(i).est,n-est)))
= construct-state-map-pos(ps)

63

+* fd-pos-ext-est(i, ps,

ps(i).effect-set,
ps(i).est ,

n-est,

construct-state-map-pos(ps)))

assert DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-LST
fa (ps: sched, qs:sched, i:integer, n-lst)

(construct-state-map-pos

(seq-shadowl(ps, i, tuple-shadow(ps(i).1st, n-lst)))

= construct-state-map-pos(ps)

+* fd-pos-ext-lst(i, ps, ps(i).effect-set,

n-lst + ps(i).duration ,

ps(i).lst + ps(i).duration,

construct-state-map-pos(ps)))

itvavixn
assert DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED
fa (Acts: seq(activity), Sched: seq(activity))

(ALL-ACTIVITIES-SCHEDULED(Act s, Sched)

= (Included-activities(Acts) = Included-activities(Sched)))

assert DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED-OVER-EMPTY-SEQ
fa (A: seq(activity))

(all-activities-scheduled(A ,[]) = false)

assert DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-EMPTY-SEQ
fa ()

(Included-activities([]) = {})

assert DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-CONCATENATE
fa (SI: seq(activity), S2: seq(activity))

(Included-activities(SI union S2) = Included-activities(SI) union

Included-activities(S2))

assert DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-APPEND
fa (S: seq(activity), A: activity)

(Included-activities(append(S,A)) = Included-activities(S) union

Included-activities([A]))

64

assert
CONSISTENT-ACTIVITY-SEPARATION-EST-to-CONSISTENT-ACTIVITY-SEPARATIQN-EST

fa(PS)(fa(S)(REFINES-TO(S, PS) => CONSISTENT-ACTIVITY-SEPARATION-EST(S))

=> CONSISTENT-ACTIVITY-SEPARATION-EST(PS))

assert
CONSISTENT-ACTIVITY-SEPARATION-LST-to-CONSISTENT-ACTIVITY-SEPARATION-LST

fa(PS)(fa(S)(REFINES-TO(S, PS) => CONSISTENT-ACTIVITY-SEPARATION-LST(S))

=> CONSISTENT-ACTIVITY-SEPARATION-LST(PS))

assert get-activity-over-append-predecessors

fa(q,e,j) get-activity(append(q, e), e.predecessors(j))

= get-activity(q, e.predecessors(j))

c/o/c/o/o/vo/wo/o/o/i/vvVVVVVVVVVVVVVVVVVV'i

•/.
THEORY-RULES

function RULE-DISTRIBUTE-const-def-STATE-map-OVER-EMPTY

() rb-compile-simplification-equality
DISTRIBUTE-const-def-STATE-map-OVER-EMPTY

function RULE-DISTRIBUTE-const-def-state-map-OVER-append

() rb-compile-simplification-equality
DISTRIBUTE-const-def-STATE-map-OVER-append

function RULE-DISTRIBUTE-const-def-STATE-map-OVER-Extend-est

() rb-compile-simplification-equality
DISTRIBUTE-const-def-STATE-map-OVER-Extend-est

function RULE-DISTRIBUTE-const-def-STATE-map-OVER-Extend-lst

() rb-compile-simplification-equality
DISTRIBUTE-const-def-STATE-map-OVER-Extend-lst

65

'/possible

function RULE-DISTRIBUTE-DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-EST

() rb-compile-simplification-equality
DISTRIBUTE-const-pos-state-map-OVER-extend-est

function RULE-DISTRIBUTE-DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-lST

() rb-compile-simplification-equality

DISTRIBUTE-const-pos-state-map-OVER-extend-lst

0/ 0/ 0/ 0/ «/ 0/ 0/ «/ 0/ 0/ «/ 0/ 0/ 0/ 0/ 0/ •/ •/ «/ «/ «/
/o /o /o /o /o /> /• It It h It It It It It It It It It It It

function
RULE-DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED-OVER-EMPTY-SEQ-REWRITE

() rb-compile-simplification-equality
DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED-OVER-EMPTY-SEq

function
RULE-DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-EMPTY-SEQ-REWRITE

() rb-compile-simplification-equality
DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-EMPTY-SEq

function
RULE-DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-CONCATENATE-REWRITE

() rb-compile-simplification-equality

DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-CONCATENATE

function
RULE-DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-APPEND-REWRITE

() rb-compile-simplification-equality
DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-APPEND

function rule-get-activity-over-append-predecessors ()
rb-compile-simplification-equality get-activity-over-append-predecessors

I
THEORY-MISC-LAWS

I

66

THEORY-MISC-DEFS

'a'/. % ARE THESE RULES CORRECT

function
OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-CONSISTENT-ACTIVITY

-SEPARATION-EST (a)

computed-using
a = ffa(S0)(refines-to(®PS0,S0) => CONSISTENT-ACTIVITY-SEPARATION-EST(SO))'

& new-a = make-structure(

'##r RB-GRAMMAR
(rule-instance-make UNDEFINED,
CONSISTENT-ACTIVITY-SEPARATION-EST(@(c-t(PSO))),

$o, $o,
+ 1, OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-

CONSISTENT-ACTIVITY-SEPARATION-EST)')
=> OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-CONSISTENT-

ACTIVITY-SEPARATION-EST(a)

= new-a

function
OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT-ACTIVITY-

SEPARATION-LST (a)
computed-using
a = 'fa(SO)(refines-to(<9PSO,SO) => CONSISTENT-ACTIVITY-SEPARATION-LST(SO))'

& new-a = make-structure(

'##r RB-GRAMMAR
(rule-instance-make UNDEFINED,
CONSISTENT-ACTIVITY-SEPARATION-LST(@(c-t(PSO))),

${}, $o,
1, OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT

-ACTIVITY-SEPARATION-LST)')
=> OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT-ACTIVITY

-SEPARATION-LST(a)

= new-a

function
OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-propl (a)

computed-using
a = 'fa(SO)(refines-to(QPSO,SO) => Consistent-ac-power(SO))'

& new-a = make-structure(

'##r RB-GRAMMAR
(rule-instance-make UNDEFINED,

67

Consistent-ac-power-propl(@ (c-t(PSO)),
construct-state-map-def(<3 (c-t (PSO)))),

$o, $o,
1, OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-propl)')

=> OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-propl(a)
= new-a

function

OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-f ilter (a)

computed-using

a = 'fa(S0)(refines-to(@PS0,S0) => Consistent-ac-power(SO));

& new-a = make-structure(

'##r RB-GRAMMAR

(rule-instance-make UNDEFINED,

Consistent-ac-power-filter(@(c-t(PSO)),

construct-state-map-def(0(c-t(PSO)))),

$o, $o,
1, OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-filter)')

=> OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-filter(a)
= new-a

function
DUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-prop2 (a)

computed-using
a = 'fa(S0)(refines-to(SPS0,S0) => Consistent-ac-power(SO))'

& new-a = make-structure(

'##r RB-GRAMMAR

(rule-instance-make UNDEFINED,

Consistent-ac-power-prop2(0(c-t(PSO)),
construct-state-map-def(@(c-t(PSO)))),

$o, $o,
1, 0UTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-prop2)')

=> 0UTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-prop2(a)
= new-a

I
THEORY-MISC-RULES

rule tuple-deref-seq-appl-over-get-activity-index-seq-shadowl-tuple-shadow(a)
also {| index-on -> <'rb-simplification-rules, 'get-field> 1}

a = 'QqO(get-activity-index
(seq-shadowl(@ql, Qipl, tuple-shadow(Qq2(Qip2).Ofi, 00)),
Sk))

.Qfo'

68

& term-equal?(qO, ql) & term-equal?(ql, q2) & term-equal?(ipl, ip2)

& fi ~= fo
__> a = 'QqO(get-activity-index(Oql, Ok)).Qfo'

rule tuple-deref-over-get-activity-seq-shadowl-tuple-shadow(a)

also {I index-on -> <'rb-simplification-rules, 'get-field> 1}

a = 'get-activity
(seq-shadowl(Oql, Oipl, tuple-shadow(0q2(0ip2) .Of i, 00)),

.Qfo'
& term-equal?(ql, q2) & term-equal?(ipl, ip2)

& fi ~= fo
__> a = 'get-activity(Qql, Ok).Qfo'

rule defined?-over-get-activity-seq-shadowl-tuple-shadow(a)

also {| index-on -> <'rb-simplification-rules, 'defined?> 1}

a = 'defined?(get-activity
(seq-shadowl(0ql, «ipl, tuple-shadow(Qq2(0ip2).00, 00)),

0k))'
& term-equal?(ql, q2) a term-equal?(ipl, ip2)

—> a = 'defined?(get-activity(Qql, Ok))'

'/,'/. Not certain that this is valid
rule get-activity-over-append-predecessors(a)

also {| index-on -> <'rb-simplification-rules, 'get-activity> 1}
a = 'get-activity(append(Qq, Qel), Qe2.predecessors(0j))'

a term-equal?(el, e2)
~> a = 'get-activity(0q, Qe2.predecessors(0j))'

y,
THE0RY-MISC-F0RMS

form remove-SOME-OP-SIMPLIFICATION-RULES
remove-rb-simplification-rulesCsome,

■C'basic-boolean-theory-distribute-some-over-ordered-or-into-ex-form})

form add-SOME-OP-SIMPLIFICATION-RULES
add-rb-simplification-rules('some,

{'basic-boolean-theory-rule-distribute-var-definitions-in-some-op})

•/.'/, 'basic-boolean-theory-rule-distribute-var-definitions-in-some-op

form remove-member-SIMPLIFICATION-RULES
remove-rb-simplification-rules('member,

69

{'seq-theory-rule-distribute-in-over-interval})

form remove-defined?-SIMPLIFICATION-RULES
remove-rb-simplification-rules

('defined?, {'regroup-type-rule-definedness-of-function-parameter})

form remove-seq-theory-rule-distribute-in-over-reverse
remove-rb-simplification-rules('member,

{'seq-theory-rule-distribute-in-over-reverse})

form ADD-universal-FI-laws
ADD-RB-FORWARD-IMPLICATIONS

('forall,

{ 'OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-CONSISTENT-ACTIVITY
-SEPARATION-EST

, 'OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT-ACTIVITY
-SEPARATION-LST

, ' OUTAGE-RULE-CONSISTENT-AC-POWER-TO-CONSISTENT-AC-POWER-filter

, '0UTAGE-RULE-C0NSISTENT-AC-PDWER-T0-C0NSISTENT-AC-P0WER-PR0P1

, '0UTAGE-RULE-C0NSISTENT-AC-P0WER-T0-C0MSISTENT-AC-P0WER-PR0P2

})

form ADD-AND-SIMPLIFICATION-RULES

'/,'/. associative commutative idempotent identity fixpoint
add-simplification-rules-for-operator(;and) '/, ;
% add-rb-simplification-rules('and,

'/• {'basic-boolean-theory-rule-distribute-and-over-or})

70

Appendix D - Global Search Theories for the
Outage Problem

Appendix D contains the global search theory for scheduling considering the definite
period of activities.

form index-outage-scheduling
gs-activities = make-binding('gs-activities)
ft full-sched = make-binding('full-sched)
ft p-sched = make-bindingCp-sched)
ft unsched-acts = make-binding('unsched-acts)
ft def-state-map = make-binding('def-state-map)
ft p-sched-new = make-binding('p-sched-new)
ft def-state-map-new = make-binding('def-state-map-new)
ft unsched-acts-new = make-binding('unsched-acts-new)
ft gs-act = make-binding('gs-act)

—>

'##r cypress-grammar
(Global-Search-Theory GS-OUTAGE-SCHEDULING

input-types seq(activity)
input-vars gs-activities

input-condition true

output-types seq(activity)

output-vars full-sched
output-condition

all-activities-scheduled(gs-activities, full-sched)

subspace-types
seq(activity),
seq(activity),
st-hist-map

subspace-vars

p-sched,
unsched-acts,
def-state-map

subspace-split-vars
p-sched-new,
unsched-acts-new,
def-state-map-new

71

subspace-vars-constraint
def-state-map = construct-state-map-def(p-sched)

& included-activities(gs-activities) = included-activities(p-sched)
union included-activities(unsched-acts)

& disjoint(included-activities(p-sched), included-activities(unsched-acts))

& defined?(p-sched)

Constraint-Info-types

activity
Constraint-Info-vars

gs-act
Constraint-Info-condition

gs-act = first(unsched-acts)

Splitting-constraint

p-sched-new = append(p-sched, gs-act)

& unsched-acts-new = rest(unsched-acts)
& def-state-map-new = construct-state-map-def(p-sched-new)

satisfies
refines-to(p-sched,full-sched)

refines
refines-to(p-sched, p-sched-new)

initial-space
(< D, sort-activities(gs-activities),

initial-state-map>)

extract
full-sched = p-sched

Extractable

unsched-acts = []

Splittable
unsched-acts ~= []

)' in gs-theories-prop(find-global('powersequence))

form index-outage-poss-scheduling

gs-ps = make-binding Cgs-ps)
& full-sched = make-binding('full-sched)

& p-sched = make-binding('p-sched)
& def-state-map = make-biriding('def-state-map)

& poss™state-map = make-binding(Jposs-state-map)
& p-sched-new = make-binding('p-sched-new)
& def-state-map-new = make-binding('def-state-map-new)

& poss-state-map-new = make-binding('poss-state-map-new)
& gs-high-poss-interval = make-bindingCgs-high-poss-interval)

& gs-res-index = make-binding('gs-res-index)
& gs-split-time = make-binding('gs-split-time)

& gs-switch = make-binding('gs-switch)

72

—>

Global search theory for time window refinement that takes into consideration the
potential period of activities.

'##r cypress-grammar
(Global-Search-Theory GS-OUTAGE-poss-SCHEDULING-1

input-types seq(activity)
input-vars gs-ps
input-condition true

output-types seq(activity)
output-vars full-sched
output-condition

all-activities-scheduled(gs-ps, full-sched)

subspace-types
seq(activity),
st-hist-map,
st-hist-map

subspace-vars
p-sched,
def-state-map,
poss-state-map

subspace-split-vars
p-sched-new,
def-state-map-new,
poss-state-map-new

subspace-vars-constraint
def-state-map = construct-state-map-def(p-sched)
& poss-state-map = construct-state-map-pos(p-sched)

Constraint-Info-types
tuple(time9 time), integer, time, integer

Constraint-Info-vars
gs-high-poss-interval,
*/, gs-res, computed
gs-res-index, gs-split-time,
gs-switch

Constraint-Info-condition
gs-higb-poss-interval

= longest-highest-poss-excess-interval(poss-state-map)

73

& gs-res-index

= maximally-poss-act-in-poss-interval

(p-sched, gs-high-poss-interval.1,gs-high-poss-interval.2,

poss-state-map(gs-high-poss-interval.1).unav-res-map)

& gs-split-time
= poss-interval-split-time(p-sched(gs-res-index),

gs-high-poss-interval. 1,

gs-high-poss-interval.2)

k defined?(gs-split-time)
& gs-switch in [0, 1] '/, 1 causes things to be scheduled early

& (gs-switch = 0

& gs-split-time ~= p-sched(gs-res-index).1st

or

gs-switch = 1

& 1 + gs-split-time ~= p-sched(gs-res-index).est)

Splitting-constraint

if gs-switch = 0

then p-sched-new
= seq-shadowl(p-sched,

gs-res-index,
tuple-shadow(p-sched(gs-res-index).1st,

gs-split-time))
& def-state-map-new = construct-state-map-def(p-sched-new)
& poss-state-map-new = construct-state-map-pos(p-sched-new)

else

p-sched-new

= seq-shadowl(p-sched,

gs-res-index,

tuple-shadow(p-sched(gs-res-index).est,

1 + gs-split-time))
& def-state-map-new = construct-state-map-def(p-sched-new)

& poss-state-map-new = construct-state-map-pos(p-sched-new)

satisfies
refines-to(p-sched,full-sched)

refines
refines-to(p-sched, p-sched-new)

initial-space
(<gs-ps, construct-state-map-def(gs-ps),

construct-state-map-pos(gs-ps) >)

extract
full-sched = extract-schedule(p-sched)

Extractable

"excess-poss?
(longest-highest-poss-excess-interval(poss-state-map))

74

Splittable

excess-poss?
(longest-highest-poss-excess-interval(poss-state-map))

)' in gs-theories-prop(find-global('powersequence))

«U.S. GOVERNMENT PRINTING OFFICE: 1996-509-127-47063

75

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

